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Objectives: 5-year modeling & sensitivity study

Develop and apply hydro-salinity model capable of
predicting long-term impact of water and land
management decisions at the basin scale

few slides;

Retrospective of a 60-year reconstruction
(simulation) of historical changes (since 1940) In
groundwater levels, and soil and groundwater
salinity - few slides;
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Regional flow domain (Belitz et al., 1993) of western

San Joaquin Valley

Three-dimensional model
domain, bounded by Corcoran
clay at the bottom

» 1,400 km?2
» 13 Water Districts
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Groundwater pumping both
above (unconfined) and below

(confined) clay




MOD-HMS: Variably-saturated flow eqguation

Vadose zone is fully coupled with groundwater
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Hydraulic parameters,
estimated from neural network
analysis, using Rosetta




Comparison of measured with simulated

groundwater pumping in Westland’s water district
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Effect of droughts on groundwater pumping




Reconstruct Ground Water Table from 1950-2000

Observed
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Comparison of observed and simulated water table depth maps;
brown: > 30 m, red: 16-30 m, yellow: 7-16 m, green: 3-7 m,
light blue: 2—3 m, blue: <2 m.




Reconstruct Historical Soil and Groundwater salinity

from 1940-2000

Couple MODHMS
with UNSATCHEM

and simulate

Be simultaneous
S transport of 7 major
I0NS:

Soilsalinityin194.0 Ca-1 M91 Na-1 K1 HCO3 ’
—| SO, and CI
— _
= using 3-D CDE
—

Pre-development soil salinity




Reconstruct Root zone salinity dynamics

Average
root zone

Shallow
groundwater

(6 m depth) R

Deep F \

groundwater '

(20-60 m)
Schoups et al., PNAS, 2005




Climate Change 2007: Synthesis Report IPCC

(0.2 °C/decade)

Changes in temperature, sea level and Northern Hemisphere snow cover,

Percent Snow remaining for 2050,
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IPCC Special Report on Emissions Scenarios (SRES, 2000)

Scenarios for GHG emissions from 2000 to 2100 in the
absence of additional climate policies

AlFl — rapid economic growth,
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B1 — highest rainfall and smallest temperature increase

AlFIl — lowest rainfall and largest temperature increase




Climate Modeling in SJV —requires downscaling

Statistical Down-scaling

2. Global Climate

4. Impact Model Model
1. Select future — E?{,isii';ﬁs
atmospheric Scenario

greenhouse gas
scenarios

2. Select GCM’s

3. Global-to-Local
Scale
“Downscaling”

3. Bias Correct and
Downscale GCM
Model Output to
model domain

4. Forecast ET and - )
precipitation PCM sensitivity Is 2.1 °C
Hadley sensitivity is 3.3 °C




Future Temperature, ET,. and precipitation

(30-year moving averages)
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Seasonal crop response to climate change (ET
k. : Crop Coefficient

crOp)

ETerop = SUM[K, « ET o]

crop

Effect of increased CO, . not so clear, crop-dependent, e.g. C;
(cotton, tomato, and vegetables) versus C, (sorghum, corn)

More biomass production, leaf area and photosynthesis
However, off set by stomata closure
k. Is independent of climate change

Effect of increased temperature

Faster plant development, shorter growing season
Temperature changes affects ET,
Possible heat stress for some crops




Cotton ET (ft)

Higher ET
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Effect of Climate Change on Surface Water (SW) supply,

down-scaled for each water district.....

Correlate precipitation to water supply (sw) from
historical data (pink) and from Vicuna et al (2006)
model projections (red)
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Management Responses: IR = SW + GW

(IR:Irrigation Requirement, SW: Surface- and GW: Ground-Water)

IR = (ET-Precip)/Ilrr Eff

Increase groundwater pumping, GW:
- controlled by existing wells,

- quality of local groundwater, and

- pumping costs

- causes irreversible land subsidence
- affects soil salinity.

Reduce irrigation requirement, IR:

- land fallowing and retirement

- change cropping pattern,

- develop heat/water resistant cultivars

- improve irrigation technology/efficiency




Effect of climate change on groundwater pumping: Compare

climate change scenarios with current and 90% irrigation efficiency (IE
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Effect of climate change on shallow groundwater extent:

Compare scenarios with current and 90% irrigation efficiency (IE)

7
post-SRES range (80%) / post-SRES (max)
/

1400 mop—
U é?v 140
1200 ¢
q) % 120 Bl
) S 100t
@) £l
@ 1000 ¢
— 8 80
U g &
© g0 = N ‘/\/"\
8 2000 220 200 2000 200 2100 l \/\/ ‘\\
‘e 600 | gl A l
< "\ 1‘\“ ‘.A
-8 400 | e ¥ A1Fi -
© IE=90%06 Y
— 200 |
O ! 'LL ! ! ! ! ' ' '
1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Year
<

>
historical




Projection of effect of climate change on soil salinity —
Average soil EC = 4 dS/m (top 7 feet)
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Effect of climate change on tomato yield

(Colored areas depict yield decrease of 50% or more)
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Assessment of Climate Warming :

Annual crop water demand might be reduced by faster crop
development;

Large uncertainty in precipitation and water supply projections;

Regardless of climate change, soil and groundwater salinity will
continue;

Land subsidence will be very limited;

Irrigation community will respond by
Increasing acreage of land fallowing and retirement

Augment crop water requirement by groundwater pumping
Improve irrigation efficiency

Shift to high-value and salt-tolerant crops

Climate change impacts on water demand and salinity in California’s irrigated
agriculture. 2008. G. Schoups, E.P. Maurer, and J.W. Hopmans. Climatic Change.

Additional work is required on quantifying uncertainties in projected climate change predictions and impacts




Proposed UCD-DWR Lysimeter study
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UCD IGERT Proposal: Climate Change Effects on
Water Resources, Aguatic Ecosystems, and Agriculture

(CCEWAA)

The goal of this IGERT is to train graduate students that are both deeply competent in
one or more specific disciplines and broadly conversant in the multiple disciplines that
determine the ultimate effects of climate change on society and the natural world.

Key interfaces of this IGERT denoted in red.
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Questions & Comments




Effect of climate change on salt load (dissolved) to

groundwater: Cumulative salt load, Million Tons of salt

Blue-green-yellow-red (high to low)
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