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5 Adaptive Mesh, Embedded Boundary Model for Flood Modeling

5.1 Summary

We describe a 2-dimensional shallow water model designed to simulate water quality and flooding. The
model uses a finite-volume discretization of the shallow water equations on an adaptive Cartesian mesh,
using embedded boundaries to represent complex topography. For flooding applications, we use
adaptive mesh refinement (AMR) to evolve Cartesian sub-grids near a flood front, which leads to a
resolved local result. Fluxes on the front itself are described using wet-dry Riemann solutions. The
algorithms are implemented in parallel and highly scalable. The model is tested using analytical solutions
of flood propagation on wet and dry channels and of a dam-break problem. Applications to flooding in
arbitrary bathymetry are discussed.

5.2 Introduction

The California Department of Water Resources (DWR) and Lawrence Berkeley National Laboratory
(LBNL) are collaboratively developing a multi-dimensional computer model to solve the shallow-water
equations. The motivation of the project is to provide a high performance, accurate, and open-source
tool for decision making support in the San Francisco Bay and Sacramento-San Joaquin Delta. The Bay-
Delta system is a nexus of water policy debate and scientific scrutiny, with constantly shifting concerns
including salt intrusion, fish and pollutant transport, water supply reliability, and flooding of Delta
islands. In particular, the property and infrastructure risk posed by flood events underscores the need
for models in flood risk assessment and planning.

Our shallow water model REALM (River, Estuary, and Land Model) includes a shock-capturing algorithm
and 2 technologies relevant to flood modeling: adaptive mesh refinement and embedded boundaries.
We employ adaptive mesh refinement (AMR) [(Berger and Oliger 1984) (Berger and Colella 1989)] to
refine fronts, maintain resolution at local length scales and concentrate computational resources on
predefined areas of interest. We use a Cartesian mesh with embedded boundaries (EB) to represent the
natural shoreline. Although adaptive mesh refinement has been used before in flood modeling [e.g.
(George 2006); (Begnudelli, Sanders and Bradford 2008)], we believe that the use of AMR and EB
together is novel, particularly in context of a scalable, parallel computer architecture.

This chapter summarizes our algorithm, describes details relevant to flood modeling, and describes the
verification of our model for transient flooding events using problems from the literature on wet and dry
beds. We discuss wet bed applications in a natural setting with arbitrary topography, as well as some of
the challenges and ambiguities of the EB-AMR approach on 2 different types of wetting and drying
problems.

5.3 Governing Equations

Our shallow water model REALM is based on the 2D depth-integrated Navier-Stokes equations, with a
hydrostatic treatment of pressure, Boussinesq assumption concerning salt-induced horizontal
(baroclinic) density variation and friction. The shallow water equations are commonly and efficiently
used as models of flood propagation and inundation, a practice that is noted and critiqued in (Alcrudo
2002).
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In terms of the height of the water column h, local velocities Y and V and salt concentration S, the
shallow water equations in conservation form are

oU +a(FX) +a(Fy) _s
ot oX oy

U = (h, hu, hv, hs)”

Eq. 5-1

where the conserved variable vector and the flux across cell faces in x and y

directions are

EX = 2p0 Eq. 5-2

hv

huv ,

2 + gph Eq. 5-3
) 2p,
VS

FY=

In these equations, g denotes the gravitational constant, Po denotes the density of fresh water, and

p=p(s) is an equation of state. To focus on flooding and the hyperbolic component of our solver,
viscous terms, including horizontal eddy diffusivity and salt dispersion are not discussed here.
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The sources and sinks include pressure forces from the bed, friction stress, and other local sources of
mass or momentum such as wind or Coriolis acceleration. Here we consider only bottom pressure and
friction:

T

s=0,-2hb, -7,,-%nb -7,,0 Eq. 5-4
Po Po

where bx and by are the slope of the bed in x and y direction and x is a bottom stress given by the
Chezy formula (Molls, Zhao and Molls 1998):

T, = pczu\/u2+v2 Eq. 5-5

0

T, = pzv\/u2+v2 Eq. 5-6

P.C

where C is the Chezy coefficient.

5.4 Solution Algorithm

We use a finite volume discretization of the shallow water equations, based on a Cartesian grid with
embedded boundaries representing shorelines. Data are collocated at cell centers. Our algorithm is best
articulated in 3 tiers:

AMR: Adaptive mesh refinement orchestrates integration over the multiple levels of grids
refined in space and time.
EB: We use a special treatment on the cell containing shoreline.

Godunov: Single grid computations are handled by a second order Godunov scheme with
corner transport upwind (CTU) treatment of fluxes at cell faces.
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5.4.1 Adaptive Mesh Refinement

In the organization of our algorithm, adaptive mesh refinement plays the role of an outer controller,
sequentially advancing the time step at different levels of refinement. The AMR component of our
algorithm follows Berger and Colella (1989) as modified by Colella, Graves, et al. (2006) and Pember, et
al. (1995) for embedded boundaries. The cycle of information is depicted in Figure 5-1. Levels of the
AMR hierarchy are integrated from coarse to fine. Between levels, results in coarse cells abutting fine-
coarse interfaces (dots) are used to help estimate boundary conditions for the next finer level. Upon
completion of the time step, fine cell states and fine cell fluxes are averaged and used to replace data in
underlying coarse cells. When regridding occurs, further interpolation is required to fill new levels. The
result is a conservative, consistent estimate over the hierarchy. Our AMR approach allows flexible
criteria for refining cells, including user-prescribed refinement, refinement based on (Richardson
extrapolation) error estimates, presence of a wet-dry interface, or sharp gradients.

Boundaries

Note: Coarse cells adjacent to fine cells (dots) are used to provide boundary conditions
for the fine mesh

Figure 5-1 A multiblock adaptive mesh hierarchy with a refinement factor
of 2 between levels
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5.4.2 Embedded boundaries

We use Cartesian cut cells (Colella, Graves, et al. 2006) to represent natural boundaries with high fidelity
without a steep time step penalty in partial cells due to the use of an explicit integration method. Figure
5-2 shows a grid intersecting the boundary at a shoreline. The grid is decomposed into regular, irregular,
and covered cells (covered cells are implied by elimination).

Regular cells are integrated using methods for a square Cartesian mesh. Irregular volumes of fluid are
treated using a hybrid update that combines a conservative small cell estimate with a non-conservative
full cell estimate, using weights proportional to the fraction of the irregular cell that is wet. The non-
conservative divergence contributes stability; the conservative divergence preserves mass and
momentum, induces the boundary condition, and is accurate. The combination induces a mass and
momentum discrepancy, and the mismatch is mitigated by redistribution of the discrepancy to nearby
cells. Further details are discussed in Colella, Graves, et al. (2006).

N
N
1 |
b

Note: Gray regions are outside the domain. Covered cells have been removed from the
illustration on the right side.

Figure 5-2 Decomposition of a patch of cells into regular, irregular, and covered cells

5.4.3 Godunov algorithm

Within one multiblock grid, we employ the solution algorithm in Colella, Graves, et al. (2006), which is a
finite volume predictor-corrector method: We construct accurate, upwinded estimates of the fluxes on
cell faces and then update cell average values. The technique has the following attributes:

1. Calculation of spatial gradients using limiters to avoid oscillations near discontinuities.

2. Extrapolation in one space dimension and time of variables from cell centers to edge centers at the
half time.

3. Solution of a Riemann problems for upwinding, which convert the dual estimates of extrapolated
variables on each side of a face into upwinded fluxes. We use a primitive solver based on the
linearized problem as described in Toro (2006). The solution is modified to include salinity-induced
density variation.

4. Modification of the dual, one dimension estimate with fluxes in the transverse direction, as in the
Corner Transport Upwind method of Colella (1990).

The algorithm produce upwinded fluxes and primitive variable estimates that are shock-capturing,
second order accurate in smooth flow, and robust to flow oblique to the coordinate faces. In cells that
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intersect the shore, the upwinded primitive variables are further interpolated and combined into a
conservative divergence as described in the previous section.

Source terms are integrated using Heun's method. A well known difficulty with explicit finite volume
representations is maintaining quiescent flow. The pressure component of the flux must be discretized
in such a way to balance the bed pressure source in quiescent flow. Otherwise, the discretization can
excite flow from a fluid at rest. Our characterization of bed pressure is based on this balance using a
source discetization with face contributions analogous to the face contributions to the flux divergence
under the conditions that the water surface is level (at the cell center level) and velocity is zero. Because
the flux divergence is a hybrid, the bed source is too. The approximation is consistent with the source

terms —g—phbx and —%hby in the original partial differential equation (PDE) and preserves

Po Po

quiescent flow well.

5.5 Wet/Dry Front Capture

In flood modeling, one of 2 treatments of an evolving flood front is usually adopted. The first, which is
common for modeling tsunamis and intertidal mudflats, is to treat front propagation as a side effect of
rising or falling water on bathymetry (Figure 5-3a). The second propagates the flood as a discontinuity
(Figure 5-3b) and requires the ability to track or capture the evolving front.

The results we present here are for evolution over a flood plain. We use our hyperbolic algorithm, wet-
dry Riemann solvers, and AMR to capture flood waves (Figure 5-3b). We use embedded boundaries to
model shores that do not move. The capability to model the interaction between water levels and
bathymetry (Figure 5-3a) is a work in progress.

=t ~ _

Figure 5-3 Two depictions of flooding
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Figure 5-4 AMR resolving a flood along a reach of the Sacramento River

Adaptive mesh refinement is used to help resolve the flood wave front. Figure 5-4 shows subgrids
spawned around a flood wave front on a reach of the Sacramento River based on the gradient of the
solution. We also use dry-wet interfaces as a criterion for re-gridding. Embedded boundaries represent
the (in this case, static) levee boundaries.

Due to the Godunov finite volume discretization, upwinding, and use of gradient limiters, our algorithm
is inherently able to capture discontinuities such as flood waves and wet-dry fronts. In the Godunov
algorithm, we estimate the state on the faces and switch between an exact wet/dry Riemann solution
and approximate state wet/wet Riemann solution based on whether the faces are wet or dry. On faces
with both sides dry, depth and velocity are of course always set to zero.

As will be seen in the next section, the model is capable of resolving and reproducing the shallow water
physics of an advancing flood on both wet and dry beds.

5.6 Model Verification

We have applied our code to several flood and dam-break test cases proposed by CADAM (Concerted
Action on Dam Break Modeling) to verify the stability and accuracy flood algorithms. A detailed
description of the test suite is available in Goutal and Maurel (1997). Here we present results for CADAM
tests 3,4 and 5.
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5.6.1 Dam Break on a Dry Bottom

This test problem has data containing a dry bed to the right of dam in a rectangular channel with a flat
bottom. An instantaneous dam break is assumed, and unsteady flow velocity and water depth are
computed by the model. An analytical solution (Ritter Solution) exists for the test and is given in Goutal
and Maurel (1997). The objective of this test is to test the stability of the code in simulating the
propagation of a wave over the dry zone.

The spatial domain is represented by a 2048x16 m rectangular cross section channel, which is
discretized using 1 m square cells. The channel bottom is assumed frictionless and initial condition is set
to:

h=6m, u=0 if x<0
h=0m, u=0 if x>0

The dam break occurs at x=0. The time step is adapted to maintain a Courant number of 0.9. Results for
this test are shown at time=50.78 S in Figure 5-5.

The simulated dry/wet surface matches the analytical solution well. In Figure 5-5 REALM correctly
simulates the jump of velocity at the front without obvious oscillation.

REALM

Reference ——

REALM

Reference —— o

Velociy(mis)

Depth(m)

400 =200 0 200 400 60 800 -400 200 o 200 400 600 &0

x(mj xim)

Figure 5-5 Water depth (left) and velocity (right) after dam break at time 50.78 seconds

Page 5-8 Adaptive Mesh, Embedded Boundary Model for Flood Modeling



Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

5.6.2 Dam Break on a Wet Bottom

This test problem has data containing a wet bed to the right of dam in a rectangular channel with a flat
bottom. An instantaneous dam break is assumed, and unsteady flow velocity and water depth are
computed by the model. An analytical solution (Goutal and Maurel 1997) exists for the test. The
objective of this test is to observe the ability of the code to resolve (a) the speed of wave propagation,
(b) the strength of the jump on the shock front, (c) the width of the shock layer and (d) stability in the
vicinity of the shock.

The spatial domain is again represented by a 2048x16 m rectangular cross section channel discretized
using 1 m size square cells. The channel bottom is assumed frictionless and initial condition is set to:

h=6m, u=0 if x<O
h=2m, u=0 if x>0

The dam is at x=0. The time step is adaptive to maintain a Courant number of 0.9.

Results for this test are shown at time 50.52 seconds in Figure 5-6.

REALM

reference ——

REALM =

reference

.

Depthim)

Lo00 =500 1] 300 1000 1000 500 1] 500 1000
xmj x(m}

Figure 5-6 Water depth (left) and velocity (right) after dam break at time 50.52 seconds

Again REALM performs well with respect to the objectives of this test. The simulated left transonic
rarefaction wave and right shock wave match their analytical counterparts as shown in Figure 5-6. The
downstream wave moves faster than upstream wave, a feature of the analytical solution. In the left
rarefaction wave, simulated water depth and velocity are smooth without any distinct break point. In
the middle shock layer zone, both the computed water depth and velocity match the analytical solution
well. There are no oscillations in the vicinity of the computed shock.
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5.6.3 Dam Break on a Dry Bottom with Friction

In this test, REALM is applied to the unsteady flow resulting from an instantaneous dam breaking in a
rectangular channel with constant width and with friction. Only the approximate Dressler solution
(Dressler 1952) is available, the validity of which is limited to a region comprising less than one-third the
distance to the point where the solution gives a zero value of flow. The objectives of this test are to
validate the ability of the code to propagate a wave front over a dry bed with friction.

The spatial domain is again represented by a 2048x16 m rectangular cross section channel discretized
using 1 m size square cells. The Chezy coefficient is set to 40 and the initial condition is set to:

h=6m, u=0 if x<0
h=0m, u=0 if x>0

The dam is at x=0. The time step is adaptive to maintain a Courant number of 0.9.

Results for this test are shown at time 50.88 seconds in Figure 5-7.

1 L REALM =

. SALN
Reference REALM

Reference ——

Velocity {m)

Depthim)

0 L 0 > - - N
SO0 -1 400 -2041 1] 200 400 -800 R -400 ~200 1] 2000 400

xmj % (m}

Figure 5-7 Water depth (left) and velocity (right) after dam break at time 50.88 seconds

The simulated result shows an apparent slowing down of the wave front. This effect is caused by the
friction term. Upstream of the dam, REALM correctly computes water depth and velocity. The behavior
of REALM is stable in the vicinity of the wave front.

5.7 Applications and Challenges

REALM appears to do well on a class of flood evolution problems involving flat bathymetry regardless of
whether the bed is wet or dry. Anecdotally, we have observed that the model also handles practical
flooding problems in fully wetted channels robustly. We point out, however, that the benchmarks
presented in this paper focus on flat beds. This class of problem poses some of the greatest numerical
challenges for flooding, but application of REALM on wetting and drying problems dominated by
topography is still under development.

One problem during drying is caused by inaccurate reconstruction of volumes, depths, and face
apertures in partially wet cells from the water surface. As a cell dries, its 2D area shrinks. The
relationship between average depth and surface becomes more difficult to estimate. The cell can dry
out early, and inconsistencies can develop between whether the cell is considered wet and whether a
face is considered wet.
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Begnudelli, Sanders, and Bradford (2008) noted similar problems and reconstruct the depth of partially
dry faces by extrapolating a surface from the wet neighbors. Casulli (1990) proposes the use of a subgrid
bathymetry model comprised of piecewise flat elements.

We are working to address the problem by updating the embedded boundary depiction of the domain
along with fluctuations in the surface. On a domain with a steep bed, the treatment amounts to a
subgrid bathymetry model. On a domain with a shallow bed slope, the flood front can move across the
cell easily as a wave and be captured by the numerics, as was the case in the results presented here.

Another issue we have experienced is that high fluxes tend to overdraw the adjacent cells of mass and
momentum. Sleigh et al. (1998) used a limited flux to solve this issue, in which momentum flux is set to
zero and only mass flux is considered. Another solution in keeping with the mechanics of our algorithm
is to include the overdraft as part of mass and momentum redistribution in the EB component
algorithm, donating it to neighboring cells in proportion to the mass already contained in the cells. We
also continue to hone our Riemann solutions for this application, as our approximate state Riemann
solver is sometimes the source of unrealistic fluxes in extremely shallow flows.
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