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6 Using Software Quality and Algorithm Testing to Verify a One-
Dimensional Transport Model 

6.1 Introduction  
In this chapter, we describe our approach and experiences developing a software verification framework 
for a one dimensional (1-D) transport model of advection, dispersion, and reactions or sources (ADR). 
We begin by describing the motivation and requirements for testing. Our acceptance criteria are driven 
by the requirements for the model, but are crafted according to principles from both the software and 
numerical testing fields. We then describe the components and implementation of the test suite, 
emphasizing the incremental nature of the tests, quantitative criteria for testing, and the similarities and 
tension between the silent, automatic perspective of software testing and the verbose, graphical 
outputs required for public reporting of numerical verification results.  

The testing framework described in this paper was developed as part of a project to create a new 
transport module for the Delta Simulation Model 2 (DSM2), a 1-D hydrodynamic and transport model 
for flow and water quality in the Sacramento-San Joaquin Delta. Our target problems include river and 
estuary advection, and 1-D approximations of common mixing mechanisms and source terms associated 
with conservative and non-conservative water quality kinetics including sediment transport. The 
transport code is described briefly below followed by the development of the testing framework. The 2 
are tightly coupled—since the transport module was created from scratch, it provided an opportunity to 
structure the code to be rigorously tested.  

6.2 1-D Transport Model 
The model used to illustrate the testing framework is based on the 1-D transport equations in 
conservative form: 
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where x is the distance, t is time, A is the wetted area, C is the scalar concentration, u is the flow 
velocity, K is the longitudinal dispersion coefficient, and R is the source term (deposition, erosion, lateral 
inflow, and other forms of sources and sinks). Eq. 6-1 describes the mass conservation of a pollutant in 
dissolved phase, or suspended sediment away from the streambed. 

The problem domain includes estuarine river channels and even some small open water areas roughly 
approximated as channels. The main transport process is advection, and the mixing mechanisms we 
anticipate are turbulent diffusion, gravitational circulation, and shear dispersion (Fischer, et al. 1979) 
(Abbott and Price 1994). We anticipate the shear dispersion to dominate over the turbulent diffusion. 
We also expect the gravitational circulation to exert an important role in mixing. We additionally 
contemplate significant, non-linear source terms from sediment, chemical and biological processes, 
though none of the processes are so quickly varying as to constitute truly stiff reactions. 

Time evolution Advection Dispersion Source/Reaction 
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Our algorithms include an explicit scheme for advection based on a finite-volume method (FVM) 
discretization and the Lax 2-step method (Colella and Puckett 1998) with van Leer flux limiter (Saltzman 
1994). It also includes an implicit, time-centered Crank-Nicolson scheme for dispersion (Fletcher 1991). 
The advection and reaction solver are coupled as a predictor corrector pair, and dispersion is 
implemented separately using operator splitting.  

6.3 Testing Requirements 
The tests described in this chapter are all designed around suitability of the solver for estuary transport 
problems. The required accuracy on target modeling applications and choice of algorithm influence the 
testing requirements and the components of our algorithm test suite.  

The scales of estuary transport determine the range of relative strength over which we test advection, 
diffusion and reactions, which is mostly intermediate Peclet number flow. Our target accuracy is strict 
second order for individual operators and near second order for the algorithm as a whole. Second order 
allows a coarser discretization for a modest increase in work per volume of fluid, which is efficient. A 
second-order algorithm also gives us a buffer of accuracy as details like networks of channels and coarse 
boundary data are added. At the time of this writing, our splitting is first order Godunov splitting. Some 
authors, e.g. (Leveque 1986), have observed that near second-order accuracy can be achieved with first 
order splitting, and the design of the tests probes this point.  

Two features of the algorithm feature into the design of our test. First, the scheme requires a flow field 
(flow discharges and flow areas) that preserves mass continuity. In some cases, tests from the literature 
were written in non-conservative or primitive form and had to be reworked in conservative form. 
Second, we employ operator splitting and wanted to exercise the equations with and without known 
vulnerabilities (such as time-varying boundaries and nonlinear source terms) of this class of algorithm. 

6.4 Testing Principles 
Flow and transport codes inherently comprise both numerical algorithms and pieces of software. Well-
developed testing literature exists for both. Oberkampf and Trucano (2002) describe some elements of 
software quality engineering (SQE) in the context of numerical verification and note some cultural 
reasons why it is seldom implemented.  

Figure 6-1 is adapted from this work and depicts the relationship between software testing components 
and algorithmic testing such as convergence tests. We regard numerical verification as our key 
responsibility and the numerical verification toolset as our greatest assets. Nonetheless, we also 
comment below on how these tools feature as tests and how, at times, they seem in tension with the 
principles of good software testing. 
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The unit testing point of view is that code must be exercised over a range of inputs that covers every 
line. For instance, to test a gradient routine with a slope limiter, a developer would want to cover: 

1. smooth cases in the middle of the mesh; 

2. behavior near the edges of the mesh, where one-sided differences may be used instead of 
central differences; 

3. cases that test the limiters with steep or zero gradients in both directions. 

Any system test will certainly exercise the gradient code in the middle of the mesh, which in any event 
can seldom be wrong without being obvious. However, system-level tests might miss the more unusual 
cases. For example, a convergence test may miss a bug in the limiter for the case of steep decreasing 
slope for several reasons. First, convergence is often assessed with limiters turned off, as they are locally 
order reducing. Second, it is hard to fiddle with the problem in just the right way to make sure the left, 
right, and center cases of the gradient limiter are all triggered. This is particularly true when trying to 
exercise other units of code at the same time—parameter choices made to fully exercise gradient limiter 
may lessen the coverage of another unit. 

Although the software and algorithm tests are separate, information discovered during one test can aid 
in the further development of another test. We began our coding with near-100% coverage by unit 
tests. These tests were part of the debugging and development processes. Later, discoveries made in 
the context of system tests were analyzed and pushed back into unit tests whenever possible. The unit 
test was expanded to verify that the newly discovered error from the algorithm test was fixed and does 
not reoccur. This flow of information is indicated in Figure 6-1.  

One example of this accumulation of tests is our unit test for fluid mass conservation. The observation 
that our algorithm requires accurate mass conservation of the fluid came from the tidal test case. The 
flow field we used for this case was adapted for 1-D from Wang et al. (2009). The original solution was 
based on a linearization and is not mass conservative in 1-D, causing significant problems with transport 
convergence. Once this requirement was discovered, a unit test was introduced into the suite to check 
this property for any flow field. At the same time, we found we had to tailor some of the analytical 
results we were using for other tests. 

A second example involved periodic flow. Our uniform flow convergence tests originally had a reversal 
of flow midway through the test. The out-and-back setup is convenient for advection because the initial 
condition and final concentration field are the same. We also believed we were exercising the code in  
2 directions. In fact, an error accumulated in the positive direction was cancelled by the return pass in 
the negative direction. We passed the periodic test but failed analogous unidirectional tests. Originally, 
the discovery was fortuitous because the unidirectional test was “unofficial”; now we test directional 
dependence using a combination of periodic and unidirectional flow 

6.4.2 Numerical verification and algorithmic testing 
An important category of a system test includes the algorithm tests normally associated with verification 
of numerical codes. Algorithm tests serve multiple purposes. They are intended in part to discover bugs 
and in part to convince ourselves and others of the merit of the algorithm to solve the equations to 
which it is directed.  

One of the well-recognized and standard verification methods of computational fluid dynamics codes is 
based on the notion of mesh convergence (Roache 2009). Mesh convergence for models that solve 



Methodology for Flow and Salinity Estimates  32nd Annual Progress Report 

Page 6-5 Using Software Quality and Algorithm Testing to Verify 

partial differential equations is assessed by successively refining the spatial and temporal discretizations. 
As the mesh is refined, the error estimates (for us usually an L1 norm, or sum absolute error) should 
decrease at a convergence rate that is algorithm dependent (Leveque 2002). A second order accurate 
algorithm, denoted O(2) or Oሺ∆tଶ, ∆xଶሻ should have its error go down proportional to the square of the 
step sizes. By checking convergence, we ensure that the model is consistent with an underlying 
formulation rather than numerical artifacts. Failure to converge usually represents either a bug in the 
implementation or a difficulty of the algorithm on a class of problem. 

The verification toolkit is largely targeted at providing test problems and methods to estimate error in 
situations where an analytical solution is not available from the literature. When nonlinearity, spatially 
varying coefficients and other complexities are introduced, tricks must be introduced to obtain good test 
problems.  

Depending on the context, error and convergence are usually estimated one of 2 ways: 

• When successive refinements are assessed relative to an analytical solution, we have a direct 
estimate of error and the ratio allows us to estimate a convergence rate. 

• When successive grids are compared to one another, we can invoke the concept of Richardson 
extrapolation and Grid Convergence Index (Roache 2009) to indirectly estimate error and 
convergence even when no solution is available.  

In practice, we found the Method of Manufactured Solutions (MMS) (Roache 2009) was able to supply 
analytical verification problems for all the cases not covered directly in the literature.  

At least in theory, convergence rates can be stipulated as a project requirement and software testing 
assertion. Convergence rates, not absolute error, are what numerical methods tend to promise, and 
they are very useful in the discovery of code defects. Still, the main goal in practice is a more accurate 
solver. Therefore, the superiority of methods should be assessed based on both convergence and 
accuracy (Roache 2009).  

The convergence ratio in a very coarse grid oscillates around its main value; as the grid size is refined, 
convergence becomes monotonic until the mesh size reaches a point where the machine precision 
overtakes the truncation error of the numerical scheme. At this point, error norms do not change, and 
the convergence rate is zero. Convergence ratios should be checked for intermediate grid sizes, 
preferably at the scale of the real phenomenon and discretization used in practice. In the conclusions, 
we describe the challenge of dealing with tests that returned failed results when the convergence was 
just slightly below the target level.  

As acceptance tests, algorithm tests should be conducted over a range of problems that exercise the 
major physical features that are to be modeled. The community may help with this by providing 
benchmarks, but we were unable to ascertain any widely accepted benchmarks for a 1-D transport code. 
As system tests we believe that the tests should be glass box, targeting known or discovered 
vulnerabilities of the algorithm. The ability to use remote and active boundaries in our convergence 
tests, for instance, is specifically motivated by known problems related to operator splitting. 

Finally, distinction might be made between the reportable set of algorithm tests and other types of 
system tests aimed at defect discovery. Important examples of the latter are tests of symmetry, such as 
a whether a 1-D model gives the same result when the upstream and downstream boundaries are 
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swapped. Others are positivity preservation of constituents, mass conservation, and oscillation 
detection. In the case of positivity preservation and mass conservation, it is typical to abstract this code 
for use both in the test suite and in the driver as a user option. 

Overall, we agree with the conclusions of Salari and Knupp (2000) that system tests—particularly 
convergence tests—expose bugs well, particularly when an attempt is made to test symmetrically and 
over special cases. We feel that the incremental approach we describe in the next section further helps 
to isolate problems. Nevertheless, a close reading of Salari and Knupp (2000) does reveal that the 
convergence tests sometimes initially failed to pick up bugs that are exactly the sorts unit tests might 
catch (e.g., gaffes in corner cells).  

6.5 Algorithm Test Suite Description 
The algorithm testing used an incremental building block approach that adds complexity on 2 major 
dimensions (Figure 6-2): 

• Operators: The tests were developed for a 1-D transport code that will be applied to an estuary. 
Thus the key processes tested are the operators of advection, dispersion, and reaction (e.g., 
growth or decay). These are tested individually, then in combinations of growing complexity 

• Flow field and physical setup: Our fixtures included the following cases 

- Uniform flow: This test involved uniform steady flow on a channel, sometimes with a 
reverse in direction halfway through the simulation. The mass transported is Gaussian. The 
suite includes advection, diffusion, and reaction alone and in the combinations indicated in 
Figure 6-2. 

- Tidal flow: This test used a tidal flow field from Wang et al. (2009), adapted to be 1-D and 
mass conserving, to test advection and reaction. The test itself has no analytical solution, 
but is periodic in a way that is not symmetric. 

- Spatial variation (Zoppou): This test is due to Zoppou and Knight (1997), and includes 
velocity proportional to distance and diffusion coefficients proportional to distance squared. 
This test had to be modified for a conservative fluid flow. 

• Boundary complexity: For the uniform flow and Zoppou tests, we include cases where the 
boundary is far away from the transported mass and cases where the boundary is actively part 
of the problem. This allows us to determine the extent to which convergence rates are affected 
by boundaries. 

• Nonlinearity: In our final case, which uses the Zoppou and Knight (1997) fixture adapted using 
the MMS, we include a non-linear source term. 
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Our code was designed for testing. In particular, computational routines were crafted according to the 
following 3 architectural considerations: 

• We isolated any computations that could be described with easy-to-understand names, with the 
caveat that we did not want to degrade performance or prevent vectorization. Our routines 
tend to be simple, homogenous calculations over arrays (such as calculating the gradient over 
the entire domain) rather than long sequences of instructions on individual cells. 

• Data are passed to computational routines by argument list. This leads to longer argument lists, 
but makes the description of input and output much surer—tests are much harder to program 
when data required by the routine is passed in “behind the scenes” using imported modules. 

• The design allows us to dynamically swap in new sources, flow fields, and boundary conditions 
without halting the tests or recompiling the code. This ability required function pointers and 
abstract interfaces, a relatively new FORTRAN feature. 

6.7 Challenges and Issues with Tests 
The key issues associated with unit tests were different than those associated with algorithm tests. The 
main challenge with unit tests seems to be culture: generating the will to write them and the skills to 
write them in a way that covers the unusual cases. Without the aid of special coverage tools, test 
coverage is up to the diligence and craftiness of the developers. 

For algorithm tests, nominally we sought a second order convergence rate. A convergence criterion 
seemed in-keeping with the way numerical algorithm accuracy is expressed and is less arbitrary than a 
hard-wired, scale-dependent absolute standard. Early on, however, it was clear that the normal noise 
from observed convergence rates could spoil even a success when the rate is expressed as a hard 
assertion. It is challenging to deal with situations when a convergence test fails with a value close to the 
criterion, e.g., 1.97 instead of 2.0, which surely would pass a graphical acceptance test. This issue can be 
exacerbated by sensitivity to problem parameters. 

When one of our tests did not cleanly converge at the specified level, we generally either fixed the code 
successfully or we searched for bugs until both of the following things happened: 

• Convergence properties corresponded well to the expected strengths and limitations of our 
algorithm; and 

• The solution was accurate: convergent above first order, excellent qualitative results when 
compared graphically to solutions and with relative errors of a hundredth of a percent. 

We have done our best to support our claims when attributing any convergence deviations to specific 
algorithmic or problem quirks. Our incremental suite can identify with good precision exactly which 
added layer of complexity causes a drop in order of accuracy. Where we intend to relax convergence 
criteria, we are in the process of changing our assertion criteria to an absolute accuracy requirement 
coupled with a regression standard for convergence. In our numerical code, cases with multiple 
operators and very active boundaries are the only ones in which we currently expect such a 
compromise.   
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Finally, there is sometimes a tradeoff between the requirements for verification and best practices for 
error discovery. Part of the community verification process for transport codes is the presentation of 
results in graphical format. Accommodating this type of display requires output beyond mere reports of 
assertion failures. We added the required verbosity option, but graphical interpretation plays no part in 
our regular testing practices other than as a debugging tool. 

6.8 Conclusions 
Our test suite succeeds both in finding bugs and in elucidating the strengths and weaknesses of a  
1-D transport algorithm. We feel that our test suite is parsimonious and reasonably complete for tidal 
applications. Applying the framework to our own code, we have been able to work towards second 
order convergence for many tests and to isolate problems in special cases. 

We believe the essential ideas in our approach are: 

• Codes must be written in a modular format with software testing in mind in order to apply the 
principals of software quality engineering. Each piece of code must have a clear purpose and 
criterion for success. 

• Tests should be silent and automatic. Test criteria must be binary assertions. Assertions are 
written to provide more information than simply assessing graphs of expected vs. computed 
results; however, we include verbosity options to export data for graphs. 

• There is a symbiotic relationship between software and algorithm tests; Code bugs detected 
with algorithm tests can lead to development of additional software regression tests to verify 
that a bug is fixed and to provide assurance that it does not reoccur. 

• Convergence tests are the principal tool used in the algorithm verification literature. Our suite 
includes convergence tests on a combination of analytical problems from the literature and a 
manufactured solution using MMS.   

• When convergence criteria are implemented as hard test assertions, account must be made of 
the small random noise typical of convergence results. 

• Incremental addition of complexity helps to isolate the causes of problems and to establish that 
lower complexity solutions are correct. 

• Symmetry and directionality tests help discover errors that may be hidden by the setup of the 
problem. 

The software quality and algorithm testing framework described in this paper provides a useful starting 
point for researchers and practitioners wanting to verify transport codes. Having this rigorous test suite 
allows developers (1) to verify that each piece of code works properly both individually and as a 
combined system, (2) to ensure additions to the code do not adversely affect existing code, and (3) to 
find and fix code bugs that might otherwise be missed. Providing the end user with test results and the 
ability to rerun the tests themselves, assures the user that the code performs as expected and quantifies 
the code’s strengths and weaknesses. 
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