

Methodology for Flow and Salinity Estimates in the
Sacramento-San Joaquin Delta and Suisun Marsh

32nd Annual Progress Report
June 2011

Chapter 6
Using Software Quality and Algorithm Testing to
Verify a One-dimensional Transport Model
Authors: Eli Ateljevich and Jamie Anderson,

Delta Modeling Section,
Bay-Delta Office,
California Department of Water Resources

K. Zamani and F. A. Bombardelli,
Department of Civil and Environmental Engineering,
University of California, Davis

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-ii Using Software Quality and Algorithm Testing to Verify

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-iii Using Software Quality and Algorithm Testing to Verify

Contents
6 Using Software Quality and Algorithm Testing to Verify a One-Dimensional Transport Model 6-1

6.1 Introduction ... 6-1

6.2 1-D Transport Model ... 6-1

6.3 Testing Requirements .. 6-2

6.4 Testing Principles ... 6-2

6.4.1 Software Testing Principles .. 6-3

6.4.2 Numerical verification and algorithmic testing ... 6-4

6.5 Algorithm Test Suite Description ... 6-6

6.6 Architecture and Implementation ... 6-7

6.7 Challenges and Issues with Tests ... 6-8

6.8 Conclusions .. 6-9

6.9 Acknowledgments ... 6-10

6.10 References ... 6-10

Figures
Figure 6-1 Relationship between software testing components and algorithmic testing ... 6-3
Figure 6-2 Transport algorithm testing with incremental complexity ... 6-7

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-iv Using Software Quality and Algorithm Testing to Verify

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-1 Using Software Quality and Algorithm Testing to Verify

6 Using Software Quality and Algorithm Testing to Verify a One-
Dimensional Transport Model

6.1 Introduction
In this chapter, we describe our approach and experiences developing a software verification framework
for a one dimensional (1-D) transport model of advection, dispersion, and reactions or sources (ADR).
We begin by describing the motivation and requirements for testing. Our acceptance criteria are driven
by the requirements for the model, but are crafted according to principles from both the software and
numerical testing fields. We then describe the components and implementation of the test suite,
emphasizing the incremental nature of the tests, quantitative criteria for testing, and the similarities and
tension between the silent, automatic perspective of software testing and the verbose, graphical
outputs required for public reporting of numerical verification results.

The testing framework described in this paper was developed as part of a project to create a new
transport module for the Delta Simulation Model 2 (DSM2), a 1-D hydrodynamic and transport model
for flow and water quality in the Sacramento-San Joaquin Delta. Our target problems include river and
estuary advection, and 1-D approximations of common mixing mechanisms and source terms associated
with conservative and non-conservative water quality kinetics including sediment transport. The
transport code is described briefly below followed by the development of the testing framework. The 2
are tightly coupled—since the transport module was created from scratch, it provided an opportunity to
structure the code to be rigorously tested.

6.2 1-D Transport Model
The model used to illustrate the testing framework is based on the 1-D transport equations in
conservative form:

() () ()),(,,),(),(),(),(),(),(),(),(txCtxR
x

txCtxKtxA
xx

txutxCtxA
t

txCtxA +⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂=

∂
∂+

∂
∂

 Eq. 6-1

where x is the distance, t is time, A is the wetted area, C is the scalar concentration, u is the flow
velocity, K is the longitudinal dispersion coefficient, and R is the source term (deposition, erosion, lateral
inflow, and other forms of sources and sinks). Eq. 6-1 describes the mass conservation of a pollutant in
dissolved phase, or suspended sediment away from the streambed.

The problem domain includes estuarine river channels and even some small open water areas roughly
approximated as channels. The main transport process is advection, and the mixing mechanisms we
anticipate are turbulent diffusion, gravitational circulation, and shear dispersion (Fischer, et al. 1979)
(Abbott and Price 1994). We anticipate the shear dispersion to dominate over the turbulent diffusion.
We also expect the gravitational circulation to exert an important role in mixing. We additionally
contemplate significant, non-linear source terms from sediment, chemical and biological processes,
though none of the processes are so quickly varying as to constitute truly stiff reactions.

Time evolution Advection Dispersion Source/Reaction

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-2 Using Software Quality and Algorithm Testing to Verify

Our algorithms include an explicit scheme for advection based on a finite-volume method (FVM)
discretization and the Lax 2-step method (Colella and Puckett 1998) with van Leer flux limiter (Saltzman
1994). It also includes an implicit, time-centered Crank-Nicolson scheme for dispersion (Fletcher 1991).
The advection and reaction solver are coupled as a predictor corrector pair, and dispersion is
implemented separately using operator splitting.

6.3 Testing Requirements
The tests described in this chapter are all designed around suitability of the solver for estuary transport
problems. The required accuracy on target modeling applications and choice of algorithm influence the
testing requirements and the components of our algorithm test suite.

The scales of estuary transport determine the range of relative strength over which we test advection,
diffusion and reactions, which is mostly intermediate Peclet number flow. Our target accuracy is strict
second order for individual operators and near second order for the algorithm as a whole. Second order
allows a coarser discretization for a modest increase in work per volume of fluid, which is efficient. A
second-order algorithm also gives us a buffer of accuracy as details like networks of channels and coarse
boundary data are added. At the time of this writing, our splitting is first order Godunov splitting. Some
authors, e.g. (Leveque 1986), have observed that near second-order accuracy can be achieved with first
order splitting, and the design of the tests probes this point.

Two features of the algorithm feature into the design of our test. First, the scheme requires a flow field
(flow discharges and flow areas) that preserves mass continuity. In some cases, tests from the literature
were written in non-conservative or primitive form and had to be reworked in conservative form.
Second, we employ operator splitting and wanted to exercise the equations with and without known
vulnerabilities (such as time-varying boundaries and nonlinear source terms) of this class of algorithm.

6.4 Testing Principles
Flow and transport codes inherently comprise both numerical algorithms and pieces of software. Well-
developed testing literature exists for both. Oberkampf and Trucano (2002) describe some elements of
software quality engineering (SQE) in the context of numerical verification and note some cultural
reasons why it is seldom implemented.

Figure 6-1 is adapted from this work and depicts the relationship between software testing components
and algorithmic testing such as convergence tests. We regard numerical verification as our key
responsibility and the numerical verification toolset as our greatest assets. Nonetheless, we also
comment below on how these tools feature as tests and how, at times, they seem in tension with the
principles of good software testing.

Methodo

Page 6-3

Figure 6

6.4.1 S
The princ

1. Te

2. Th

3. Te

One goal
regression
conseque
statemen
code unde
requiring
regression

The softw
tests of la
have a un

logy for Flow

6-1 Relations

Software Tes
iples that we

esting should

he approach

esting should

of tests is tha
n suite that e

ence of autom
ts that can be
er considerat
strict converg
n criterion (“c

ware testing lit
arger subtasks
nit test. Conve

and Salinity

ship between

sting Princi
want to emp

d be automati

should foster

d provide assu

at they be a c
stablishes a g

mation is that
e tested with
tion is correct
gence criteria
convergence

terature furth
s. For exampl
ergence tests

Estimates

n software te

iples
phasize are:

ic and continu

r exact specif

urance of whe

ontinuous as
gauntlet throu
tests must be
out human in
t. Convergenc
a (“the algorit
will not get a

her distinguis
le, the evalua
and other alg

Using Softw

esting compo

uous.

ication of eve

ether a set of

sessment of t
ugh which fut
e phrased in t
ntervention a
ce criteria are
thm is second

any worse tha

shes between
ation of a grad
gorithm tests

ware Quality

onents and a

ery unit of cod

f specification

the code. The
ture code cha
terms of bina
nd that revea

e a rigorous b
d order accur
an last time th

n unit tests of
dient might b
s are example

32nd Annua

and Algorithm

algorithmic t

de.

ns is met.

e entire testin
anges must b
ary assertions
al whether th
asis for asser
ate in time an

he code was t

f atomic routi
be a unit of co
es of system t

al Progress Re

m Testing to V

testing

ng system is a
e passed. A

s, true and fal
e aspect of th

rtions, either
nd space”) or
tested”).

nes and syste
ode, and it wo
tests.

eport

Verify

a

se
he
by

r a

em
ould

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-4 Using Software Quality and Algorithm Testing to Verify

The unit testing point of view is that code must be exercised over a range of inputs that covers every
line. For instance, to test a gradient routine with a slope limiter, a developer would want to cover:

1. smooth cases in the middle of the mesh;

2. behavior near the edges of the mesh, where one-sided differences may be used instead of
central differences;

3. cases that test the limiters with steep or zero gradients in both directions.

Any system test will certainly exercise the gradient code in the middle of the mesh, which in any event
can seldom be wrong without being obvious. However, system-level tests might miss the more unusual
cases. For example, a convergence test may miss a bug in the limiter for the case of steep decreasing
slope for several reasons. First, convergence is often assessed with limiters turned off, as they are locally
order reducing. Second, it is hard to fiddle with the problem in just the right way to make sure the left,
right, and center cases of the gradient limiter are all triggered. This is particularly true when trying to
exercise other units of code at the same time—parameter choices made to fully exercise gradient limiter
may lessen the coverage of another unit.

Although the software and algorithm tests are separate, information discovered during one test can aid
in the further development of another test. We began our coding with near-100% coverage by unit
tests. These tests were part of the debugging and development processes. Later, discoveries made in
the context of system tests were analyzed and pushed back into unit tests whenever possible. The unit
test was expanded to verify that the newly discovered error from the algorithm test was fixed and does
not reoccur. This flow of information is indicated in Figure 6-1.

One example of this accumulation of tests is our unit test for fluid mass conservation. The observation
that our algorithm requires accurate mass conservation of the fluid came from the tidal test case. The
flow field we used for this case was adapted for 1-D from Wang et al. (2009). The original solution was
based on a linearization and is not mass conservative in 1-D, causing significant problems with transport
convergence. Once this requirement was discovered, a unit test was introduced into the suite to check
this property for any flow field. At the same time, we found we had to tailor some of the analytical
results we were using for other tests.

A second example involved periodic flow. Our uniform flow convergence tests originally had a reversal
of flow midway through the test. The out-and-back setup is convenient for advection because the initial
condition and final concentration field are the same. We also believed we were exercising the code in
2 directions. In fact, an error accumulated in the positive direction was cancelled by the return pass in
the negative direction. We passed the periodic test but failed analogous unidirectional tests. Originally,
the discovery was fortuitous because the unidirectional test was “unofficial”; now we test directional
dependence using a combination of periodic and unidirectional flow

6.4.2 Numerical verification and algorithmic testing
An important category of a system test includes the algorithm tests normally associated with verification
of numerical codes. Algorithm tests serve multiple purposes. They are intended in part to discover bugs
and in part to convince ourselves and others of the merit of the algorithm to solve the equations to
which it is directed.

One of the well-recognized and standard verification methods of computational fluid dynamics codes is
based on the notion of mesh convergence (Roache 2009). Mesh convergence for models that solve

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-5 Using Software Quality and Algorithm Testing to Verify

partial differential equations is assessed by successively refining the spatial and temporal discretizations.
As the mesh is refined, the error estimates (for us usually an L1 norm, or sum absolute error) should
decrease at a convergence rate that is algorithm dependent (Leveque 2002). A second order accurate
algorithm, denoted O(2) or Oሺ∆tଶ, ∆xଶሻ should have its error go down proportional to the square of the
step sizes. By checking convergence, we ensure that the model is consistent with an underlying
formulation rather than numerical artifacts. Failure to converge usually represents either a bug in the
implementation or a difficulty of the algorithm on a class of problem.

The verification toolkit is largely targeted at providing test problems and methods to estimate error in
situations where an analytical solution is not available from the literature. When nonlinearity, spatially
varying coefficients and other complexities are introduced, tricks must be introduced to obtain good test
problems.

Depending on the context, error and convergence are usually estimated one of 2 ways:

• When successive refinements are assessed relative to an analytical solution, we have a direct
estimate of error and the ratio allows us to estimate a convergence rate.

• When successive grids are compared to one another, we can invoke the concept of Richardson
extrapolation and Grid Convergence Index (Roache 2009) to indirectly estimate error and
convergence even when no solution is available.

In practice, we found the Method of Manufactured Solutions (MMS) (Roache 2009) was able to supply
analytical verification problems for all the cases not covered directly in the literature.

At least in theory, convergence rates can be stipulated as a project requirement and software testing
assertion. Convergence rates, not absolute error, are what numerical methods tend to promise, and
they are very useful in the discovery of code defects. Still, the main goal in practice is a more accurate
solver. Therefore, the superiority of methods should be assessed based on both convergence and
accuracy (Roache 2009).

The convergence ratio in a very coarse grid oscillates around its main value; as the grid size is refined,
convergence becomes monotonic until the mesh size reaches a point where the machine precision
overtakes the truncation error of the numerical scheme. At this point, error norms do not change, and
the convergence rate is zero. Convergence ratios should be checked for intermediate grid sizes,
preferably at the scale of the real phenomenon and discretization used in practice. In the conclusions,
we describe the challenge of dealing with tests that returned failed results when the convergence was
just slightly below the target level.

As acceptance tests, algorithm tests should be conducted over a range of problems that exercise the
major physical features that are to be modeled. The community may help with this by providing
benchmarks, but we were unable to ascertain any widely accepted benchmarks for a 1-D transport code.
As system tests we believe that the tests should be glass box, targeting known or discovered
vulnerabilities of the algorithm. The ability to use remote and active boundaries in our convergence
tests, for instance, is specifically motivated by known problems related to operator splitting.

Finally, distinction might be made between the reportable set of algorithm tests and other types of
system tests aimed at defect discovery. Important examples of the latter are tests of symmetry, such as
a whether a 1-D model gives the same result when the upstream and downstream boundaries are

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-6 Using Software Quality and Algorithm Testing to Verify

swapped. Others are positivity preservation of constituents, mass conservation, and oscillation
detection. In the case of positivity preservation and mass conservation, it is typical to abstract this code
for use both in the test suite and in the driver as a user option.

Overall, we agree with the conclusions of Salari and Knupp (2000) that system tests—particularly
convergence tests—expose bugs well, particularly when an attempt is made to test symmetrically and
over special cases. We feel that the incremental approach we describe in the next section further helps
to isolate problems. Nevertheless, a close reading of Salari and Knupp (2000) does reveal that the
convergence tests sometimes initially failed to pick up bugs that are exactly the sorts unit tests might
catch (e.g., gaffes in corner cells).

6.5 Algorithm Test Suite Description
The algorithm testing used an incremental building block approach that adds complexity on 2 major
dimensions (Figure 6-2):

• Operators: The tests were developed for a 1-D transport code that will be applied to an estuary.
Thus the key processes tested are the operators of advection, dispersion, and reaction (e.g.,
growth or decay). These are tested individually, then in combinations of growing complexity

• Flow field and physical setup: Our fixtures included the following cases

- Uniform flow: This test involved uniform steady flow on a channel, sometimes with a
reverse in direction halfway through the simulation. The mass transported is Gaussian. The
suite includes advection, diffusion, and reaction alone and in the combinations indicated in
Figure 6-2.

- Tidal flow: This test used a tidal flow field from Wang et al. (2009), adapted to be 1-D and
mass conserving, to test advection and reaction. The test itself has no analytical solution,
but is periodic in a way that is not symmetric.

- Spatial variation (Zoppou): This test is due to Zoppou and Knight (1997), and includes
velocity proportional to distance and diffusion coefficients proportional to distance squared.
This test had to be modified for a conservative fluid flow.

• Boundary complexity: For the uniform flow and Zoppou tests, we include cases where the
boundary is far away from the transported mass and cases where the boundary is actively part
of the problem. This allows us to determine the extent to which convergence rates are affected
by boundaries.

• Nonlinearity: In our final case, which uses the Zoppou and Knight (1997) fixture adapted using
the MMS, we include a non-linear source term.

Methodo

Page 6-7

Figure 6

These tes
of numeri
and the g
descriptio

Our incre
drop in or
remote, b

6.6 Ar
The test a
assertions
language.
JUnit form

Both the s
one unit t

logy for Flow

6-2 Transpor

ts were cond
ical stability o
rid spacing an

ons of the tes

mental suite
rder of accura
but drops to a

chitecture
architecture w
s and countin
. FRUIT does n
mat), but prov

system tests
test module p

and Salinity

rt algorithm t

ucted for a ra
of the algorith
nd time steps
ts are beyond

can identify w
acy. For insta
a convergence

and Imple
was implemen
ng pass rates.
not appear to
vides a variety

and the unit t
per solver mo

Estimates

testing with

ange of param
hm), domain
s were adjuste
d the scope o

with good pre
nce, our exam
e rate of O(1.

ementation
nted using th
FRUIT is one

o adhere to in
y of predefin

tests were de
odule, one un

Using Softw

incremental

meter values.
length, and d
ed to maintai

of this paper a

ecision exactl
mple algorith
4) or so in th

n
e FORTRAN U
of the few te

ndustry practi
ed assertions

eveloped with
it test routine

ware Quality

complexity

 Typically the
dispersion and
in the same C
and will appea

y which adde
m performs w
e presence of

Unit Testing F
est framewor
ices in the wa
s.

h FRUIT, and t
e per solver r

32nd Annua

and Algorithm

e Courant num
d decay coeff
Courant numb
ar in a planne

ed layer of co
well when bo
f active boun

ramework (F
ks available in

ay it formats

the granularit
outine.

al Progress Re

m Testing to V

mber (a meas
ficients were
ber. Detailed
ed journal art

mplexity caus
undaries are
daries.

RUIT) for logg
n this comput
results (e.g., t

ty for unit tes

eport

Verify

sure
fixed;

ticle.

ses a

ging
ter
the

sts is

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-8 Using Software Quality and Algorithm Testing to Verify

Our code was designed for testing. In particular, computational routines were crafted according to the
following 3 architectural considerations:

• We isolated any computations that could be described with easy-to-understand names, with the
caveat that we did not want to degrade performance or prevent vectorization. Our routines
tend to be simple, homogenous calculations over arrays (such as calculating the gradient over
the entire domain) rather than long sequences of instructions on individual cells.

• Data are passed to computational routines by argument list. This leads to longer argument lists,
but makes the description of input and output much surer—tests are much harder to program
when data required by the routine is passed in “behind the scenes” using imported modules.

• The design allows us to dynamically swap in new sources, flow fields, and boundary conditions
without halting the tests or recompiling the code. This ability required function pointers and
abstract interfaces, a relatively new FORTRAN feature.

6.7 Challenges and Issues with Tests
The key issues associated with unit tests were different than those associated with algorithm tests. The
main challenge with unit tests seems to be culture: generating the will to write them and the skills to
write them in a way that covers the unusual cases. Without the aid of special coverage tools, test
coverage is up to the diligence and craftiness of the developers.

For algorithm tests, nominally we sought a second order convergence rate. A convergence criterion
seemed in-keeping with the way numerical algorithm accuracy is expressed and is less arbitrary than a
hard-wired, scale-dependent absolute standard. Early on, however, it was clear that the normal noise
from observed convergence rates could spoil even a success when the rate is expressed as a hard
assertion. It is challenging to deal with situations when a convergence test fails with a value close to the
criterion, e.g., 1.97 instead of 2.0, which surely would pass a graphical acceptance test. This issue can be
exacerbated by sensitivity to problem parameters.

When one of our tests did not cleanly converge at the specified level, we generally either fixed the code
successfully or we searched for bugs until both of the following things happened:

• Convergence properties corresponded well to the expected strengths and limitations of our
algorithm; and

• The solution was accurate: convergent above first order, excellent qualitative results when
compared graphically to solutions and with relative errors of a hundredth of a percent.

We have done our best to support our claims when attributing any convergence deviations to specific
algorithmic or problem quirks. Our incremental suite can identify with good precision exactly which
added layer of complexity causes a drop in order of accuracy. Where we intend to relax convergence
criteria, we are in the process of changing our assertion criteria to an absolute accuracy requirement
coupled with a regression standard for convergence. In our numerical code, cases with multiple
operators and very active boundaries are the only ones in which we currently expect such a
compromise.

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-9 Using Software Quality and Algorithm Testing to Verify

Finally, there is sometimes a tradeoff between the requirements for verification and best practices for
error discovery. Part of the community verification process for transport codes is the presentation of
results in graphical format. Accommodating this type of display requires output beyond mere reports of
assertion failures. We added the required verbosity option, but graphical interpretation plays no part in
our regular testing practices other than as a debugging tool.

6.8 Conclusions
Our test suite succeeds both in finding bugs and in elucidating the strengths and weaknesses of a
1-D transport algorithm. We feel that our test suite is parsimonious and reasonably complete for tidal
applications. Applying the framework to our own code, we have been able to work towards second
order convergence for many tests and to isolate problems in special cases.

We believe the essential ideas in our approach are:

• Codes must be written in a modular format with software testing in mind in order to apply the
principals of software quality engineering. Each piece of code must have a clear purpose and
criterion for success.

• Tests should be silent and automatic. Test criteria must be binary assertions. Assertions are
written to provide more information than simply assessing graphs of expected vs. computed
results; however, we include verbosity options to export data for graphs.

• There is a symbiotic relationship between software and algorithm tests; Code bugs detected
with algorithm tests can lead to development of additional software regression tests to verify
that a bug is fixed and to provide assurance that it does not reoccur.

• Convergence tests are the principal tool used in the algorithm verification literature. Our suite
includes convergence tests on a combination of analytical problems from the literature and a
manufactured solution using MMS.

• When convergence criteria are implemented as hard test assertions, account must be made of
the small random noise typical of convergence results.

• Incremental addition of complexity helps to isolate the causes of problems and to establish that
lower complexity solutions are correct.

• Symmetry and directionality tests help discover errors that may be hidden by the setup of the
problem.

The software quality and algorithm testing framework described in this paper provides a useful starting
point for researchers and practitioners wanting to verify transport codes. Having this rigorous test suite
allows developers (1) to verify that each piece of code works properly both individually and as a
combined system, (2) to ensure additions to the code do not adversely affect existing code, and (3) to
find and fix code bugs that might otherwise be missed. Providing the end user with test results and the
ability to rerun the tests themselves, assures the user that the code performs as expected and quantifies
the code’s strengths and weaknesses.

Methodology for Flow and Salinity Estimates 32nd Annual Progress Report

Page 6-10 Using Software Quality and Algorithm Testing to Verify

6.9 Acknowledgments
This work has been possible due to the support given by the California Dept. of Water Resources
through a contract with UC Davis. We thank Tara Smith and Dr. Francis Chung from DWR for their
support of this project.

6.10 References
Abbott, M. B. and W. A. Price. 1994. Coastal, Estuarial, and Harbour Engineers’ Reference Book.
Chapman & Hall.

California Department of Water Resources. Delta Simulation Model 2 (DSM2). [Web page].
http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/dsm2/dsm2.cfm (accessed 2011).

Colella, P. and E. G. Puckett. 1998. "Modern Numerical Methods for Fluid Flow.".

Fischer, B. H., J. E. List, R. C. Koh, J. Imberger, and N. H. Brooks. 1979. Mixing in Inland and Coastal
Waters. Academic Press, Inc.

Fletcher, C. A. J. 1991. Computational Techniques for Fluid Dynamics. Springer.

Leveque, J. R. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

Leveque, J. R. 1986. "Intermediate Boundary Conditions for Time-Split Methods Applied to Hyperbolic
Partial Differential Equations." Mathematics of Computation 47: 37-54.

Oberkampf, W. L., Trucano T. G. 2002. “Verification and Validation in Computational Fluid Dynamics .
SANDIA REPORT, No. SAND2002-0529.

Roache, P. J. 2009. Fundamentals of Verification and Validation. Hermosa Publishers.

Salari, K., Knupp, P. 2000. Code Verification by the Method of Manufactured Solutions. SANDIA REPORT,
No. SAND2000-1444.

Saltzman, J. 1994. "An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws." J. of
Computational Physics 115: 153-168.

Wang, S. Y., P. J. Roache, R. A. Schmalz, Y. Jia, and P. E. Smith. 2009. "Verification and Validation of 3D
Free-Surface Flow Models." ASCE, EWRI.

Zoppou, C., and J. H. Knight. 1997. "Analytical Solution for Advection and Advection-Diffusion Equation
with Spatially Variable Coefficients." J. Hydraulic Eng. 123(2): 144-148.

