Estimation of reduction of export using DSM2-PTM and PEI

Kijin Nam
Delta Modeling Section
Modeling Support Branch
Bay-Delta Office, DWR
October 30th, 2008
Acknowledgement

- Eli Ateljevich
- Jon Shu
- Yiguo Liang
- Min Yu
- Lan Liang
POD (Pelagic Organism Decline)

- Recent collapse of abundance of pelagic organism
 - Delta Smelt
 - Reasons are still unclear
 - Export of SWP/CVP is considered as a one of possible causes
Wanger Decision

- Issued on Dec 14, 2007
- Reduce pumping to protect Delta Smelt
 - By establishing Old and Middle River flow criteria
- Temporary measures until new Federal Biological Permits are issued
How Much Export Must Be Reduced?

- Finding out the amount of reduction in export to reduce possible particle entrainment is very crucial.

- The best way would be
 - Minimizing entrainment and
 - Maximizing export
Find Out Export Reduction by PEI

- Set a target **PEI** (Potential Entrainment Index)
- What export would meet a target PEI under a given hydrodynamics and particle distribution in the Delta?
 - No analytical solution
 - Solve iteratively by running DSM2-PTM several times
 - An optimization problem
Procedure

Start

Read water volumes

Read particle distribution

Read historical export

Start with an initial guess of export adjustment

Generate an adjusted historical export DSS file

Run DSM2-PTM

Read PTM results

Calculate PEI

Meet PEI target?

Set a new export adjustment rate

No

Yes

End
Implementation

- The procedure requires reading inputs, adjusting export, running DSM2-PTM, reading output, and solving the optimization.
 - Can be scripted by Python
 - VTools to handle DSS files (input and output time series of DSM2-PTM)
 - ‘Brent algorithm’ to solve the optimization
Streamlined Runs

- Combining environmental variables in DSM2 database and python command can control different settings in DSM2-PTM in a batch.

Input file of DSM2

```
DCC_ENV           {DCC_SET}
```

Python code

```
os.environ["DCC_SET"] = 1
```

DSM2 Database

<table>
<thead>
<tr>
<th>La...</th>
<th>Gate</th>
<th>Device</th>
<th>Variable</th>
<th>Input File</th>
<th>Path/Value</th>
<th>Fillin</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>delta_cross_channel</td>
<td>cross_channel_gates</td>
<td>op_from_nonconstant</td>
<td>${DCC_ENV}</td>
<td>none</td>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>
Application
- Particle Entrainment

- With historical input, Year 2003, late March

\[PEI = \sum_{i=1}^{N} (PP_i \times RA_i) \]
Application
– Particle Distribution

- Year 2003, late March (1st survey)

\[PEI = \sum_{i=1}^{N} (PP_i \times RA_i) \]

\[RA_i = (P_i \times V_i) / \sum_{i=1}^{N} (P_i \times V_i) \]

(From DFG website)
Application - Result

- Year 2003, late March
- Target PEI: 3.27% over 20 days
 - Historical PEI: 14.51%
 - Reduce 67% of historical export to meet the target PEI
 - 345 TAF to 114 TAF over 20 days
Application - Year 2003

Particle Injection Date

Export Over 20 Days (TAF)

Historical
Target 3.27%
PEI
Limitations

- PTM simulates particles.
- Uncertainties and Errors
 - Fish survey, volume, etc.
- Historical distribution is used even though particle distribution under new hydrodynamic conditions can be different.
- Iterative procedure may require considerable computational time.
Conclusions

- Reduction of export under certain hydrodynamic condition and particle distribution can be estimated by PEI and DSM2-PTM.

- Impact on SWP exports while meeting entrainment target can be evaluated with different Delta management strategies, e.g. barriers.
Questions and Suggestions

Kjin Nam (knam@water.ca.gov)
BDO, DWR
Potential Entrainment Index (PEI)

- Delta-wide estimation of particle entrainment
 - Weighted-average of entrainment
 \[PEI = \sum_{i=1}^{N} (PP_i \times RA_i) \]

- \(PEI \): Potential Entrainment Index to export
- \(PP_i \): Percentage of particles entrained from location \(i \) to export
- \(RA_i \): Relative abundance of particles at location \(i \)
 \[RA_i = \frac{(P_i \times V_i)}{\sum_{i=1}^{N} (P_i \times V_i)} \]

- \(P_i \): Number of particles at location \(i \)
- \(V_i \): Water volume of location \(i \)
- \(N \): Number of locations
PEI Calculator

- Developed by Yiguo Liang
- Derived regression relationships between entrainment and OMR/QWEST at survey stations.

 \[PP_i = f_i(\text{OMR or QWEST}) \]

- Fast and easy to use
- Does not consider different hydrodynamics
An Example of EI Regression

20-Day Cumulative Percent Entrainment to SWP & CVP, Zone 1

Note: Zone 1 includes stations 914, 915, and 918 and entrainment index is weighted average proportional to station-associated volume of water

(From Yiguo Liang’s presentation in 2007)
Adjusting Export

- Open a DSS file for historical setting and retrieve export time series.
- Reduce (or increase) daily export time series by certain percentage.
 - Python scripts (VTools)
 - Check constraint such as pumping capacity
- Save newly-adjusted time series into a new DSS file.
Impact of Wanger Decision

- **Dec 24 ~ Jan 3: Adults**
 - OMR $\geq -2,000$ cfs

- **Winter: Adults**
 - OMR $\geq -5,000$ cfs

- **Winter-Spring: Laval and Juvenile**
 - -750 cfs \geq OMR $\geq -5,000$ cfs

- **Lost opportunity to capture Delta Flow in Winter/Spring**
20mm Delta Smelt Survey

- Dept of Fish and Game performs 8~10 annual surveys
 - Every two weeks
 - http://www.delta.dfg.ca.gov/data/20mm