Work Plan for Assessing Climate Change Impacts on California’s Water Resources

CWEMF Climate Change Workshop
November 21, 2003
Jamie Anderson, Ph.D., P.E.

Joint DWR-USBR Climate Change Work Team
Potential Impacts of Climate Change

- Increase air temperature
- Precipitation timing and quantity
- Sea level rise
- Runoff timing and quantity
How could climate change affect management of California’s water resources?
Floods and Droughts

• Rainfall intensity and durations redefine flood frequencies and flood zones

• Frequency, intensity and duration of droughts
Water Supply

- **Water Demands**
 - human and vegetation

- **Inflows to Reservoirs**
 - shift in peak timing and volume

- **System Operations**
 - size and timing of flood control space
Water Quality

• Drinking WQ

• Environmental WQ
 River and lake temperatures
 In-stream flow requirements
San Francisco Bay-Delta

- Levee Stability
- Sea Water Intrusion: flow-salinity
GOAL

Provide qualitative and quantitative estimates of effects of climate change on California’s water resources

Provide information that is relevant to water resources decision makers
Climate modelers forecast possible future climate conditions

Our climate change team assesses potential impacts that those climate change scenarios could have on California’s water resources
Climate Change Information for Water Resources Managers

- Climate change hydrologies for planning studies
- Revised water supply reliability curves
- Changes in flood storage requirements
- Effects of sea level rise on water levels and water quality
- Provide input for the 2008 Water Plan update
Climate Change Work Team

- **DWR Bay-Delta Office**
 - Francis Chung, Ph.D., P.E.
 - Jamie Anderson, Ph.D., P.E.
 - Messele Ejeta, Ph.D., P.E.

- **DWR Division of Planning and Local Assistance**
 - Ganesh Pandey, Ph.D., P.E.
 - Sanjaya Seneviratne, M.S., P.E.
 - Brian (BG) Heiland, M.S., P.E.

- **DWR Division of Environmental Services**
 - Chris Enright, M.S., P.E.
 - Aaron Miller, P.E.

- **USBR-MP700 Reservoir Systems Analysis**
 - Levi Brekke, Ph.D., P.E.
Climate Change Work Team

Jamie Anderson
Sanjaya Seneviratne
Francis Chung
Levi Brekke
Messele Ejeta
Aaron Miller
Ganesh Pandey
Chris Enright
BG Heiland
Challenge

Given the variability and uncertainty in climate projections over California, how do we apply climate change impacts assessment to planning and management of California’s water resources?
Climate Change Predictions for Northern California Differ

Precipitation
No agreement in trend or magnitude

Air Temperature
Models agree that air temperature increases, but vary in the magnitude and rate of increase

(Source: D. Cayan, April 2003, ISAO Workshop)
Dealing with Climate Change Uncertainty

• Seek advice from other experts

• Develop/apply techniques for quantifying the uncertainty in climate change predictions

• Bookend approach
 – A lot warmer and wetter
 – A little bit warmer and drier

• Focus on predictions with least uncertainty
 – Increase air temperature only
 – Sea level rise
Potential Collaborators

California Energy Commission

Lawrence Berkeley Lab

Lawrence Livermore Lab

SCRIPPS Institute of Oceanography

U.S. Bureau of Reclamation

U.S. Geological Survey

UC Davis Civil Engineering
Climate Team Work Plan

- Select climate change scenarios
- Investigate water supply impacts of hydrology changes
- Investigate local impacts of sea level rise on the Delta
- Assess combined impacts of changed hydrology and sea level rise
Sample Key Questions

• What would be the impacts of shifting timing and amount of precipitation and snow pack?

• How do recent regulatory regimes (e.g. B2 and EWA) affect water supply and reliability impacts in the face of climate change?

• What user groups are the most vulnerable to climate change?

• How would the constraints of current flood control practices affect water supply due to seasonal changes in hydrology?
Sample Key Questions

• How much fresh water would be required to mitigate for increased Delta salinity concentrations due to sea level rise?

• How do increased air temperatures affect Delta consumptive use?
Climate Team Work Plan

- Approaches
 - Simulation
 - Optimization
 - Sensitivity Analysis
 - Risk Analysis

- Potential Models/Tools
 - CALSIM II
 - DSM2
 - RMA-2 and RMA-11
 - G-Model
 - ANN
 - SIMETAW
Model Scales

Global Climate Models

California is represented by 1 to 6 points

CALSIM II

Central Valley represented by ~300 points

DSM2 or RMA

Delta is represented by ~420 points
Spatial Resolution of Climate Change Scenarios

Simulated and observed precipitation patterns

T42 (300 km) T85 (150 km) T170 (75 km)

T239 (50 km) 0.4° x 0.5° (40 x 50 km) Observations (VEMAP)

Slide courtesy of Phil Duffy Atmospheric Science Division LLNL
Climate Team Work Plan

Select climate change scenarios

Investigate water supply impacts of hydrology changes

Investigate local impacts of sea level rise on the Delta

Assess combined impacts of changed hydrology and sea level rise
Select Climate Change Scenarios

- Climate change scenarios from GCMs
 - Perturbations applied to historical data
 - Downscaled data
 - Fine scale GCM

- Selecting climate change scenarios
 - Uncertainty analysis for air temp, precip, and runoff
 - Bookend scenarios
 - Scenarios with less uncertainty
 - Increase air temperature only
 - Sea level rise
Uncertainty Analysis for Climate Change Results

• Develop monthly sensitivity patterns for:
 – Air temperature
 – Precipitation
 – Natural runoff

• Watershed scales (e.g. Oroville, Shasta, etc)

• Evaluated at projection milestones
 (e.g. 25 years out, 50 years out)

• Account for projection uncertainty:
 – Patterns from multiple CO₂ increase scenarios
 and/or multiple GCMs of each CO₂ scenario
Conceptualization of Uncertainty

Probability bands for inflow into a given reservoir at a specific projection (e.g. Oroville 25 years into the future)
Bookend approach is used to identify ranges of potential impacts. Additional analysis would be required to identify mitigation measures.
Climate Team Work Plan

- Select climate change scenarios
- Investigate water supply impacts of hydrology changes
- Investigate local impacts of sea level rise on the Delta
- Assess combined impacts of changed hydrology and sea level rise
Investigate water supply impacts of hydrology changes

- Shifts in timing and/or amount of precipitation and snow pack (CALSIM II, CAM, etc)
 - Deliveries
 - Releases
 - Storage

- Changes in consumptive use of water due to changes in air temperature (SIMETAW)
Initial Climate Change Hydrology Study

• Extend climate change study by Brekke et al.

• Original study
 – Bookend study using PCM and HadCM2
 – 1% per year increase in “effective CO₂”
 – Shift inflow hydrology into CALSIM II using monthly perturbations from GCM results
 – D1641 at 2001 level of development

• Extended study
 – Use bookends (PCM and HadCM2)
 – Increase in air temperature with historical precip
 – D1641 at 2020 level of development
 – D1641-B2-EWA at 2020 level of development
CALSIM II Studies for Climate Change

Global Climate Models

Input
Emissions Scenario

Output
• Precipitation
• Snowmelt
• Air Temperature
• Evapotranspiration
• Soil Moisture

CALSIM II

Input
Modify inflows for 1922-1994 by perturbations from GCMs

Output
• Reservoir releases
• Reservoir storage levels
• Project deliveries
• Delta inflows and exports

Monthly inflow perturbations from Miller et al., JAWRA 2003
Average Seasonal Percent Change of Index Basin Runoff Compared with Historical Data (1963-1992)

- Oct - Mar (Shasta)
- Apr - Sep (Shasta)
- Oct - Mar (Feather)
- Apr - Sep (Feather)
- Oct - Mar (American)
- Apr - Sep (American)

Climate Change Scenario:

- 5.0T 0\%P
- HCM 2010 - 2039
- PCM 2010 - 2039

Percent Change (%)

-75 -50 -25 0 25 50 75
Shasta Monthly Inflow Ratios

Inflow Ratio (Q climate change / Q historical)

- 5.0T 0%P
- HCM 2010 - 2039
- PCM 2010 - 2039
Modify Water Year Types

![Water Year Types Chart]

- **Wet**
 - HadCM2: 32
 - Present Climate: 21
 - PCM: 17

- **Above Normal**
 - HadCM2: 15
 - Present Climate: 10
 - PCM: 11

- **Below Normal**
 - HadCM2: 13
 - Present Climate: 14
 - PCM: 8

- **Dry**
 - HadCM2: 8
 - Present Climate: 16
 - PCM: 13

- **Critical**
 - HadCM2: 5
 - Present Climate: 12
 - PCM: 24

Legend:
- **HadCM2**
- **Present Climate**
- **PCM**
Analysis of CALSIM II Climate Change Results

• Changes in system operations
 – Reservoir releases
 – Reservoir storage levels
 – Project deliveries
 – Delta inflows and exports

• Identify vulnerable components of the system

• Delivery reliability curves for climate change

• Changes in X2 (habitat and WQ measure)

X2 is the location in the Bay-Delta of 2 ppt salinity
Select climate change scenarios

Investigate water supply impacts of hydrology changes

Investigate local impacts of sea level rise on the Delta

Assess combined impacts of changed hydrology and sea level rise
Investigate local impacts of sea level rise on the Delta

- Changes in Delta water quality
- Potential effects on levee stability
- Modifications to sensitive brackish habitat
- Relative risk of changes due to sea level rise compared to variability due to other sources
Causes of Sea Level Rise

Thermal expansion of the ocean

Melting of polar ice caps
How much water and salt would be transported into the Delta with sea level rise?

Conduct modeling studies increasing the water level (tidal stage) at Golden Gate. Assume ocean salinity remains the same.
SLR Modeling Approach

- Use multi-dimensional RMA models for short term detailed studies Jan 1-June 30, 1992
- Develop SLR EC relationships at Martinez (G-model, ANN)
- Run DSM2 for longer term SLR studies (1976-1991)
Preliminary Simulated Changes in Water Levels

Diff Avg Stage SLR=1ft minus Base
Jun 1-Jun 29, 1992

Diff Max Stage SLR=1ft minus Base
Jun 1-Jun 29, 1992
Only salinity intrusion from Golden Gate was simulated. No other salinity sources were considered in this analysis.

Large percent changes reflect increases in small values, e.g. 30 uS/cm increasing to 50 uS/cm is a 66% change.
Analysis of SLR Results

• Quantify changes in
 – Tidal phase
 – Water levels (levee stability, barrier ops, habitat)
 – Salinity (water quality, habitat)

• Identify mitigation measures
 – Increase fresh water releases
 – Modify pumping patterns
 – Increase levee heights
Analysis of SLR Results (cont.)

- Identify mechanisms behind changes
 - Shear flow dispersion
 - Tidal pumping
 - Tidal trapping

- Relative risk of changes due to sea level rise compared to variability due to
 - Tidal fluctuations
 - Stage changes due to low pressure systems
 - Changes in system inflows and exports
Characterize SLR EC Relationships

• Develop representations of EC for sea level rise scenarios to be used in other models (DSM2, CALSIM II, CALVIN)
 – G-model
 – ANN
Climate Team Work Plan

Select climate change scenarios

Investigate water supply impacts of hydrology changes

Investigate local impacts of sea level rise on the Delta

Assess combined impacts of changed hydrology and sea level rise
Work Plan 2003-04 Time Line

<table>
<thead>
<tr>
<th>Task</th>
<th>OND 03</th>
<th>JFM 04</th>
<th>AMJ 04</th>
<th>JAS 04</th>
<th>OND 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refine work plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First cut analysis and simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined analysis and simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One of our long term goals: provide info for 2008 CA Water Plan update
Average Percent Annual Change of Index Basin Runoff Compared with Historical Data (1963-1992)

- Sacramento
- Feather
- American

Climate Change Scenario:
- 5.0T 0%P
- HCM 2010 - 2039
- PCM 2010 - 2039

Percent change (%)
Simulated Salinity Intrusion TDS

Base Case: Jun 29, 1992

SLR = 1ft: June 29, 1992
Relationship between Model Outputs

Global Climate Models

Output
- Precipitation
- Snowmelt
- Air Temperature
- Evapotranspiration
- Soil Moisture

CALSIM II

Output
- Reservoir operations
- Project deliveries
- Delta inflows and exports

DSM2 or RMA

Output
- Flow
- Stage (water level)
- Salinity
- Other water quality constituents

Outputs shaded blue provide input to the next model.