IWFM Demand Calculator:
IDC v4.0
revisions 178, 226

Theoretical Documentation
and
User’s Manual

Integrated Hydrological Models Development Unit
Modeling Support Branch
Bay-Delta Office
May, 2012
Table of Contents

List of Figures ..v
List of Tables ... vi
1 Introduction..1
2 Computational Framework ...5
3 Soil Moisture Routing..9
 3.1 Precipitation, P ..12
 3.2 Direct Runoff, Rp ..13
 3.3 Applied Water, Aw ..14
 3.4 Initial Return Flow, Rf,ini ...15
 3.5 Re-use of Return Flow, U ...16
 3.6 Net Return Flow, Rf ..17
 3.7 Generic Moisture Inflow, G ..17
 3.8 Drainage of Rice and Refuge Ponds, Dr ...18
 3.9 Deep Percolation, D ..19
 3.10 Evapotranspiration, ET ...20
 3.11 Change in Soil Moisture due to Change in Land Use Area, \(\Delta \theta_a \)22
 3.12 Solution of the Root Zone Conservation Equation ..23
4 Water Demand ...24
 4.1 Water Demand for Non-Ponded Crops ...24
 4.2 Water Demand for Ponded Crops ...29
 4.3 Evapotranspiration of Applied Water, ETaw ..30
 4.4 Effective Precipitation, ETp ..32
 4.5 Evapotranspiration due to Other Sources, ETG ...32
5 Example 1: Hypothetical Scenario ..33
 5.1 Zero Precipitation, Deep Percolation and Return Flow ...34
 5.2 Zero Deep Percolation and Return Flow ..36
 5.3 Zero Return Flow ...38
 5.4 Zero Return Flow and 1% Minimum Deep Percolation Fraction39
 5.5 15% Return Flow Fraction ...40
7.3.7.7.1 Ponded Crops Main File ... 122
7.3.7.7.2 Ponded Crops Area Data File .. 135
7.3.7.7.3 Ponding Depth Data File .. 139
7.3.7.7.4 Pond Operation Flows Data File .. 142
7.3.7.8 Urban Component Files ... 145
7.3.7.8.1 Urban Lands Main File ... 145
7.3.7.8.2 Urban Area Data File ... 150
7.3.7.8.3 Population Data File ... 153
7.3.7.8.4 Per Capita Water Use Data File ... 156
7.3.7.8.5 Urban Water Use Specifications Data File 159
7.3.7.9 Native and Riparian Vegetation Component Files 162
7.3.7.9.1 Native and Riparian Vegetation Lands Main File 162
7.3.7.9.2 Native and Riparian Vegetation Area Data File 165
7.4 Output Files .. 169
7.4.1 Subregional Land and Water Use Budget .. 170
7.4.2 Crop-Specific Land and Water Use Budget .. 174
7.4.3 Subregional Root Zone Moisture Budget .. 177
7.4.4 Crop-Specific Root Zone Moisture Budget .. 184
7.5 Budget Post-Processor ... 187
7.6 Linking IDC to Other Models ... 189
7.6.1 Procedure Interfaces ... 190
7.6.1.1 IDC_GetMainControlData ... 190
7.6.1.2 IDC_InitApp ... 190
7.6.1.3 IDC_AdvanceTime .. 190
7.6.1.4 IDC_GetTimeSeriesData .. 191
7.6.1.5 IDC_ComputeWaterDemand .. 191
7.6.1.6 IDC_ZeroSupply ... 191
7.6.1.7 IDC_SetSupplyToElem ... 192
7.6.1.8 IDC_Simulate ... 193
7.6.1.9 IDC_printResults .. 193
7.6.1.10 IDC_AdvanceState .. 193
7.6.1.11 IDC_GetDeepPercAll .. 194
7.6.1.12 IDC_GetDeepPercElement ... 194
7.6.1.13 IDC_GetFlowsToStreams ... 195
7.6.1.14 IDC_GetElementWaterDemand_Ag .. 195
7.6.1.15 IDC_GetElementWaterDemand_Urb ... 196
7.6.1.16 IDC_GetAgAreas .. 196
7.6.1.17 IDC_GetUrbanAreas ... 196
7.6.1.18 IDC_IsRootZoneDefined ... 197
7.6.1.19 IDC_GetVersion ... 197
7.6.2 Example Code That Links to IDC ... 197
8 References..200
List of Figures

Figure 1. Software components of IDC ...8
Figure 2. Schematic representation of root zone flow processes simulated by IDC12
Figure 3. Comparison of IDC results to CUP results for zero precipitation, deep
percolation and return flow..35
Figure 4. Comparison of IDC results to CUP results for zero deep percolation and
return flow..37
Figure 5. IDC results for zero return flow ...39
Figure 6. IDC results for zero return flow with 1% minimum deep percolation
requirement ..40
Figure 7. IDC results for 15% return flow ...41
Figure 8. IDC results for deficit irrigation scenario..42
Figure 9. Model area and the simulation grid for Example 2 ..46
Figure 10. DAUs in modeled area in Example 2 ..47
Figure 11. Soils map for the model area ...48
Figure 12. Land-use types in the modeled area ...49
Figure 13. Annual precipitation for each DAU ...51
Figure 14. Seasonal irrigation water requirement versus saturated hydraulic
conductivity for non-ponded crops at DAU 142 ...52
Figure 15. Seasonal irrigation water requirement versus saturated hydraulic
conductivity for rice at DAU 163 for water year 2000 ..53
Figure 16. Seasonal irrigation water requirement versus pore size distribution index for
non-ponded crops at DAU 142 ..54
Figure 17. Schematic representation of the IDC input file structure68
Figure 18. Example code demonstrating the linkage of IDC to another model199
List of Tables

Table 1. Summary of IDC results for the simulated scenarios (values on left are for the growing season, values in parenthesis are for the entire calendar year). All values except IE are in mm. ..43

Table 2. Comparison of IDC results for non-ponded crops to the values obtained from DPLA with Ksat values at cells with rice set to 0.01 micrometers/sec (all values are in ac-ft/ac; n/a = not applicable) ..56

Table 3. Comparison of IDC results for rice to the values obtained from DPLA with Ksat values at cells with rice set to 0.01 micrometers/sec (all values are in ac-ft/ac; n/a = not applicable) ..58

Table 4. List of allowable time step lengths in IDC simulations ...61

Table 5. Example for the representation of recycled time series data64

Table 6. Examples of acceptable and unacceptable cases for the synchronization of time series data interval and the simulation time step ...65

Table 7. File name extensions recognized by IDC ..66
1 Introduction

In developed watersheds, the stresses on surface and subsurface water resources are generally created by groundwater pumping and stream flow diversions to satisfy agricultural and urban water requirements. The application of pumping and diversions to meet these requirements also affects the surface and subsurface water system through recharge of the aquifer and surface runoff back into the streams. The agricultural crop water requirement is a function of climate, soil and land surface physical properties as well as land use management practices which are spatially distributed and evolve in time. In almost all integrated hydrologic models pumping and diversions are specified as predefined stresses and are not included in the simulation as an integral and dynamic component of the hydrologic cycle that depend on other hydrologic components as well as water resources operational practices. On the other hand, in irrigation scheduling models that route the moisture through the root zone and compute the irrigation water requirement based on the moisture content, the root zone is completely detached from the rest of the hydrologic cycle. These models generally assume that the water demand is always met and they cannot simulate the effect of extreme hydrologic and operational conditions that may limit the pumping and diversions. Therefore, both integrated hydrologic models and irrigation scheduling models can be coupled to benefit from each other’s features. This document discusses a new model developed by the California Department of Water Resources (CADWR) that estimates the irrigation water requirements and route the soil moisture through root zone in the context of integrated hydrologic modeling.

Integrated hydrologic modeling has received much attention in the last few decades. Models such as PRMS (Leavesley et al. 1983), MIKE SHE (DHI 1999), SWATMOD
(Sophocleous et al. 1999), WEHY (Kavvas et al. 2004), GSFLOW (Markstrom et al. 2008), IWFM (Dogrul 2007), HydroGeoSphere (Therrien et al. 2009) and Modflow with Farm Process (Schmid et al. 2009) are developed to route the water through the components of the hydrologic cycle and to simulate the interactions between them. Integrated hydrologic models include the simulation of the land use based runoff processes and the plant consumptive use, and their effects on surface and subsurface flow dynamics. However, except for IWFM, Modflow with Farm Process and SWATMOD, they do not simulate agricultural and urban water demands and the conjunctive use of surface and subsurface water resources to meet these demands. Essentially, they are descriptive models; i.e. given all the stresses on the hydrologic system modeled, they describe where and how fast the water flows.

However, having to pre-specify the stresses such as pumping and stream diversions may pose difficulties in a modeling study. For instance, in the State of California pumping records are proprietary or not measured and often are unavailable. Therefore, for a historical or a calibration model run, the modeler is required to estimate the historical pumping rates to meet an externally computed demand. For instance, Williamson et al. (1989) used electric power records to estimate the historical groundwater pumping in the Central Valley of California. However, such approaches may introduce additional uncertainties to the simulation. On the other hand, in a projection model run where future hydrologic and water resources operational conditions are simulated, pre-specifying pumping and diversions is almost impossible. First, the agricultural and urban water requirements that pumping and diversions are used to meet are not known until after the future conditions are actually simulated. Second, amount of pumping and diversions may be limited by physical (aquifer
storage, stream flow capacity, etc.) and contractual limitations which will affect agricultural
and urban water requirements, in turn affecting the flow dynamics. This suggests that
pumping and diversions in a projection model run are dynamic and depend on other
components of hydrologic cycle simulated. They cannot be pre-specified and can only be
simulated as an integral part of the evolving hydrologic cycle, and irrigation and urban water
requirements that depend on the cycle.

Another type of modeling tool, irrigation-scheduling-type models, treats the root zone
component of the hydrologic cycle as detached from other components. Given the climatic,
soil and crop properties, these models simulate the evolution of the soil moisture in the root
zone and the agricultural water requirement that depends on the soil moisture content
2004, Snyder et al. 2004, Raes et al. 2009). Generally, these models include a complex
representation of the flow dynamics in the root zone and solve a soil moisture balance
equation. Some of these models can also be used in evaluating the effect of different farm
management scenarios such as regulated deficit irrigation on crops and in computing

Because of the treatment of the root zone as a component disconnected from the rest
of the hydrologic cycle, irrigation-scheduling-type models cannot address situations where
applied water is different than the crop irrigation water requirement in a dynamic sense.
Similar to the integrated hydrologic models, they require applied water to be pre-defined.
The pre-defined applied water can be assumed equal to the crop irrigation requirement, it can
be pre-defined as being less than the irrigation requirement to simulate deficit irrigation
conditions, or it can be defined to be greater than the irrigation requirement. However, it is
not possible to simulate conditions where, throughout the simulation period, aquifer storage or stream flows are depleted such that the pre-defined applied water cannot be met. Another drawback of irrigation-scheduling-type models is that they cannot be calibrated or verified when they are used in regional scale applications. Since they are not connected to the stream network or the underlying aquifer system, it is generally not possible to verify the accuracy of the simulated deep percolation or the simulated surface runoff due to irrigation and precipitation.

In general, the two types of modeling approaches, integrated hydrologic and the irrigation-scheduling-type models, can benefit from each other’s capabilities if they are coupled. Integrated hydrologic models need a root zone component that is developed in an irrigation-scheduling-type approach that responds to the hydrologic and farm operational conditions, and compute corresponding water demands. On the other hand, irrigation-scheduling-type models need to be connected to the rest of the hydrologic cycle through coupling with an integrated hydrologic model to receive feedback from the aquifer system and the stream network in terms of simulated pumping and diversions that are actually available.

CADWR has been developing and maintaining the Integrated Water Flow Model (IWFM), a surface-subsurface hydrologic model that couples the integrated hydrologic modeling approach with a root zone component that uses the irrigation-scheduling-type approach (CADWR 2009). Over the years, both IWFM as a whole and its root zone component have evolved to incorporate accurate simulation techniques and to address the issues CADWR have been facing. The root zone simulation engine of IWFM is designed
such that it can either be used as a stand-alone irrigation-scheduling-type model or can easily be linked to integrated hydrologic models other than IWFM.

The stand-alone root zone modeling tool is named as IWFM Demand Calculator (IDC). As a stand-alone modeling tool, IDC assumes that the applied water is equal to the computed irrigation water requirements. When IDC’s underlying root zone simulation engine is linked to IWFM or any other integrated hydrologic model, applied water is defined as the sum of simulated pumping and stream diversions computed by the integrated hydrologic model. In this case, depending on the state of the aquifer and the stream flows, the applied water can be equal or less than the water demand computed by the root zone simulation engine. The deep percolation, surface runoff due to precipitation and irrigation return flow computed by the root zone simulation engine are passed to the integrated hydrologic model as stresses to the aquifer and the stream network.

This document describes the methods used in IDC (the stand-alone version of the root zone simulation engine) to solve the soil moisture balance in the root zone and to compute agricultural and urban water demands. However, this document should also serve as a guide for the simulation engine when linked to integrated hydrologic models since the methods as well as the input and output data files remain exactly the same.

2 Computational Framework

A computational grid is required when using IDC to compute irrigation water requirements and route moisture through the root zone. This computational grid can be a regular grid (such as a finite difference grid) or an irregular grid (e.g. a finite element grid). However, IDC expects the computational grid to be defined in a manner similar to a finite
element grid; i.e. cells and the node numbers that surround each cell should be listed along with the coordinates of the nodes (it should be noted that finite difference grids can easily be defined in this manner). Grid cells are grouped into subregions that are defined by the user. These subregions may represent different types of boundaries and scales (e.g. hydrologic regions, water districts, counties, regions where irrigation and water management data are collected, etc) depending on the requirements of the IDC application. Although IDC requires a computational grid to be defined, it does not use the finite element or the finite difference approach to solve the conservation equation for the soil moisture in the root zone. The reasons for and benefits of using a computational grid are explained later in this section.

Each grid cell area is distributed between native and riparian vegetation, urban, rice, refuge (specifically wetland refuges for waterfowl) and user-specified number of non-ponded agricultural crop lands. Rice lands are further distributed between lands where rice residue is decomposed by flooding (flooded decomp), where it is decomposed without any flooding (non-flooded decomp) and where it is not decomposed at all. Refuges are divided into two groups of seasonal and permanent refuges. Rice and refuge lands are collectively referred to as ponded crop lands. Even though refuges are not agricultural crops, the refuge ponds are managed in a way that is similar to rice ponds, allowing the simulation methods for rice fields to be used for refuges as well. For this reason, refuges are included in the ponded-crop category in IDC. Non-ponded crops are agricultural crops that are not grown in standing water like rice. The number of non-ponded crops simulated in an IDC application is specified by the user. Therefore, in an IDC application where there are N number of non-ponded crops, the total number of land use types that are simulated at each grid cell will be equal to N+8 (N for non-ponded crops, 5 for ponded crops, 1 for urban, 1 for native
vegetation and 1 for riparian vegetation). Even though N+8 land use types are simulated, a grid cell can have the area of one or more land use types set to zero. This tells IDC that those land use types do not exist in that grid cell and the simulation of these land use types is skipped. IDC allows time series land use areas defined for each grid cell, so a particular land use type that does not exist in a grid cell in earlier times of the simulation period can exist in the same cell in the later times, or an existing land use type can disappear from a cell (this feature allows, for instance, to simulate the effects of agricultural lands and native vegetation areas being converted into urban lands).

IDC computes applied water demands for ponded and non-ponded crops at each grid cell under user-specified climatic and irrigation management settings. Urban water demand is computed based on user-specified population and per-capita water usage. Native and riparian vegetations are not irrigated; therefore applied water demands for these land use types are not computed.

For all land-use types precipitation as well as applied water, if any, is routed through the root zone. Any surface runoff due to precipitation and irrigation generated at each cell is routed to a subregion, to another grid cell or to outside the model area, depending on the choice of the user. Any surface runoff that is routed to a subregion or grid cell becomes part of the applied water in that subregion or cell.

IDC is written in Fortran 2003 using an object-oriented programming approach. It consists of i) input data files, ii) output data files, iii) the numerical engine that reads data from input files, computes applied water demands, routes water through the root zone and prints out the results to output files, and iv) a user interface that utilizes an ASCII text file that allows the user to define input and output files and simulation control data for the
numerical engine (Figure 1).

Although IDC does not use finite difference or finite element methods to solve the conservation equation in the root zone, being able to operate on a grid as well as its object-oriented design brings several advantages:

i. The computational grid allows better representation of spatially-distributed data such as potential evapotranspiration, precipitation, soil characteristics, etc.

Figure 1. Software components of IDC
ii. Being able to operate on computational grids allows IDC to easily couple with other numerical engines that operate on computational grids such as groundwater models.

iii. The object-oriented design allows easy re-compilation of the numerical engine into a dynamic link library (DLL) which allows easy coupling to other hydrologic, biological and environmental numerical engines such as those that comply with Open Modeling Interface (OpenMI) standards (Gregersen et al. 2007, Goodall et al. 2007).

iv. Easy coupling to numerical engines that simulate other components of the hydrologic cycle allows calibration of model parameters (e.g. soil hydraulic conductivity, soil and irrigation management parameters that play a role in the generation of surface runoff, etc.) through the use of widely available observation data (e.g. groundwater elevations and stream flows).

The methods used by IDC to compute water demand and route moisture through root zone at a regional level, and the design of the computational framework make IDC a unique tool.

3 Soil Moisture Routing

Precipitation is generally the natural source for the soil moisture in the root zone. Precipitation that falls on the ground surface infiltrates into the soil at a rate dictated by the type of ground cover, physical characteristics of the soil and the moisture that is already available in the soil. The portion of the precipitation that is in excess of the infiltration rate generates a surface flow. In IDC, this surface flow is termed as *direct runoff*. Irrigation of
agricultural lands and urban outdoors such as lawns and parks can also generate surface flows. Surface flows due to irrigation are termed as return flows in IDC. Part of the precipitation and irrigation evaporate before infiltrating into the soil. Infiltration due to precipitation and irrigation replenish the soil moisture in the root zone which is also depleted through plant root uptake for transpiration and additional evaporation from the top layers of the soil. The transpiration through the plants and evaporation from the land surface as well as the top layers of the soil are all simulated as a single evapotranspiration term in IDC. In general, moisture in the root zone can move in horizontal as well as the vertical directions. In IDC, it is assumed that the horizontal movement of the moisture is negligible compared to the vertical movement. Therefore only the flow of the moisture in the vertical direction is addressed. The moisture that leaves the root zone through its bottom boundary is termed as deep percolation.

IDC uses a physically-based approach to compute the flow terms mentioned above and to route the soil moisture through the root zone. For a particular land use type at a grid cell, the conservation equation for the soil moisture discretized in time is

$$
\theta_{t+1}^{Z_{t+1}} = \theta_{t}^{Z_{t}} + \Delta t \left(P_{t}^{+1} - R_{P}^{+1} + A_{w}^{t+1} - R_{f}^{t+1} + G_{t}^{t+1} Z_{t+1}^{} - D_{t}^{t+1} - D_{t}^{t+1} - ET_{t}^{t+1} \right) + \Delta \theta_{a}^{t+1}
$$

and

$$
\theta_{t+1} = \theta_{p}^{t+1} + \theta_{A_{w}}^{t+1} + \theta_{G}^{t+1}
$$

$$
\theta_{t} = \theta_{p}^{t} + \theta_{A_{w}}^{t} + \theta_{G}^{t+1}
$$

$$
R_{f}^{t+1} = R_{f, ini}^{t+1} - U^{t+1}
$$

where

$$
\theta_{p} = \text{soil moisture content due to precipitation (L/L),}
$$
\[\theta_{A_w} = \text{soil moisture content due to applied water (L/L)}, \]
\[\theta_G = \text{soil moisture content due to a generic, user-defined moisture inflow (L/L)}, \]
\[\theta = \text{total soil moisture content (L/L)}, \]
\[Z = \text{rooting depth (L)}; \]
\[P = \text{rate of precipitation (L/T)}, \]
\[R_P = \text{direct runoff (L/T)}, \]
\[A_w = \text{applied water, i.e. irrigation (L/T)}, \]
\[R_{f,\text{ini}} = \text{initial return flow (L/T)}, \]
\[U = \text{re-used portion of the initial return flow (L/T)}, \]
\[R_f = \text{net return flow after re-use takes place (L/T)}, \]
\[G = \text{a generic, user-defined moisture inflow to represent any source of moisture other than precipitation or irrigation (L/L/T)}, \]
\[D_r = \text{outflow due to the draining of rice and refuge ponds (L/T)}, \]
\[D = \text{deep percolation (L/T)}, \]
\[ET = \text{evapotranspiration (L/T)}, \]
\[\Delta \theta_o = \text{change in soil moisture due to change in land use area (L)}, \]
\[t = \text{the time step index (dimensionless)}, \]
\[\Delta t = \text{simulation time step length (T)}. \]

These flow terms are depicted in Figure 2. The soil moisture in equation (1) is represented as a summation of moisture due to precipitation and applied water in order to keep track of the contribution of applied water to crop evapotranspiration which is termed as ET of applied water (ETaw) by irrigation practitioners.
Equation (1) is solved for each land use type at each grid cell. In equation (1), Θ^{t+1} and Θ^t are generally less than the total porosity, Θ_T, except for rice and refuge lands where ponding is possible. In these areas, it is assumed that the rooting depth is constant ($Z^{t+1} = Z^t$), that Θ can be computed to be greater than Θ_T, and the difference between the Θ and Θ_T represents the depth of the pond. Therefore, for rice and refuge areas, ΘZ is not truly the stored soil moisture in the root zone; it represents the sum of the soil moisture and the depth of the ponded water.

In the following sections, the simulation of the flow processes illustrated in Figure 2 will be discussed. For simplicity, time indices t and $t+1$ are dropped, when appropriate, from the flow notations in the rest of this document.

3.1 Precipitation, P

Precipitation is a user-input time series data for each grid cell.
3.2 Direct Runoff, R_p

IDC uses a modified version of SCS curve number (SCS-CN) method (USDA 2004) described by Schroeder at al. (1994):

$$R_p = \frac{1}{\Delta t} \left(\frac{P \Delta t - 0.2S}{P \Delta t + 0.8S} \right)$$

(5)

$$S = \begin{cases}
S_{\max} & \text{for } \theta^f > \frac{\theta_f}{2} \\
1 - \frac{\theta^f - \theta_f}{2} & \text{for } \theta^f \leq \frac{\theta_f}{2}
\end{cases}$$

(6)

$$S_{\max} = \frac{1000}{\text{CN}} - 10$$

(7)

where CN is the curve number specified for a combination of land use type, soil type and management practice (dimensionless), S_{\max} is the soil retention parameter for dry antecedent moisture conditions (L), S is the soil retention parameter at a given moisture content (L), θ_f is the field capacity (L/L) and θ_T is the total porosity (L/L). Equations (5) - (7) state that when root zone moisture is below half of field capacity direct runoff is at a minimum as computed by the SCS-CN method. As the soil moisture increases above half of field capacity the retention capacity of the soil decreases and direct runoff increases.

Equations (5) - (7) are not used for areas such as rice and refuge ponds, and impervious urban areas (parking lots, roof tops, etc) where the infiltration of precipitation is not possible. For these areas entire precipitation becomes direct runoff. For rice lands and seasonal refuges, the ponds are temporary. Therefore, equations (5) - (7) are used during the
period when ponds do not exist whereas the entire precipitation is converted into direct runoff during ponding season.

The total direct runoff that leaves a grid cell is the summation of direct runoff from all the agricultural and urban areas at the cell.

3.3 **Applied Water, A_w**

The main purpose of IDC is to compute dynamically the applied water for agricultural lands that will meet the crop evapotranspirative requirements in climatic and agricultural management settings defined by user-input parameters. The detailed discussion for the computation of applied water is given later in this document. Aside from being able to calculate it, IDC also allows the user to specify applied water. For instance, the amount of applied water may be dictated by contractual agreements rather than the crop evapotranspirative requirements. In a historical simulation, the amount of applied water may be available as historical records whereas in a projection run it will need to be computed. To be able to address such situations, IDC allows the user to specify some or all of the applied water amounts for each agricultural land use at each grid cell as time series input data. Applied water for any agricultural land use that is not assigned user specified values is computed by IDC.

In general, urban applied water to meet municipal and industrial water demand as well as demand for urban outdoors is calculated in terms of rate of water use per capita (e.g. CADWR 2005). For this reason, IDC does not attempt to compute the applied water for urban lands; instead, it is always a user-specified time series input data for urban lands at each grid cell. Urban areas are divided into pervious (lawns, parks and any unpaved outdoor areas) and impervious (roof tops, paved areas such as parking lots) areas. Applied water for
urban areas is divided into two parts through user-specified time series fractions to meet the urban outdoors water demand at pervious urban lands, and municipal and industrial water demand at impervious urban lands.

Native and riparian vegetation rely on precipitation alone (the contribution of groundwater to ET of riparian vegetation is not simulated in IDC). Therefore, applied water for these areas is always taken to be zero.

Applied water is computed by IDC or specified by the user for each agricultural and urban land use at each grid cell. It consists of two components: i) surface runoff (combination of return flows due to irrigation, direct runoff due to precipitation, and drainage from rice and refuge ponds) that is generated at an upstream grid cell and used as irrigation water at the grid cell in consideration, and ii) water acquired from other sources such as streams and groundwater (stream flows and groundwater system are not simulated by IDC since IDC only considers the domain that consists of the root zone and the land surface that is separated from the rest of the hydrologic cycle). Another component that can be used to meet the crop evapotranspirative requirements as well as the urban indoors and outdoors water requirements is the re-use of captured return flow, U, in a grid cell (see Figure 2). This component is not included in the definition of the applied water to properly satisfy the statement of conservation of mass. To make a distinction between applied water with and without the re-use component, the applied water without the re-use component, U, is termed as *prime applied water* (i.e. A_w as discussed in this section), and the applied water that includes U is termed as the *total applied water*.

3.4 Initial Return Flow, R_{f,ini}

Initial return flow is specified by the user as a time series fraction of the prime
applied water, A_w, for each non-ponded agricultural crop and urban land use area at each grid cell:

$$ R_{f,ini} = A_w f_{R_{f,ini}} $$

(8)

where $f_{R_{f,ini}}$ is the initial return flow fraction (dimensionless). For urban lands, the initial return flow fraction only applies to the portion of the applied water that is allocated for the urban outdoors. The applied water that is allocated for urban indoors usage is assumed to become return flow completely.

For rice and refuge areas initial return flow is specified by the user as a time series unit flow rate. Generally, irrigation methods for rice require an additional amount of water to be applied to sustain flow-through type irrigation systems (Williams 2004) where water supplied to the top-most rice field sequentially floods each successive field as it makes its way to the lowermost basin. For refuges, additional water may be necessary to keep the water in the refuge ponds moving to control water quality and algae growth.

For areas with native and riparian vegetation, $R_{f,ini}$ is zero since applied water for these areas is zero.

3.5 Re-use of Return Flow, U

Re-use of return flow is specified by the user as a time series fraction of the prime applied water, A_w, for each non-ponded agricultural crop and urban land use area at each grid cell:

$$ U = A_w f_U $$

(9)

where f_U is the re-used return flow fraction (dimensionless). Since re-used amount of return flow cannot be larger than the return flow itself, the re-use fraction must be less than or equal
to the initial return flow fraction.

Similar to initial return flow, re-use is specified as time series unit flow rate for rice and refuge areas.

U simulates the re-use that occurs in a single grid cell. In an IDC application, a single grid cell can be large enough to cover multiple farms. In this case, U represents the total return flow from upstream farms that is captured and re-used by the downstream farms in the same grid cell. Another type of re-use occurs when the return flow from a grid cell crosses the cell boundary and flows into a downstream grid cell where it is captured and re-used. This type of re-use is not included in the term U. Instead, as discussed earlier, it becomes part of the prime applied water, A_w, for the downstream grid cell.

3.6 Net Return Flow, R_f

As shown in equation (4), the net return flow, R_f, is the difference between the initial return flow, $R_{f,ini}$ and the re-used return flow, U. Substituting equations (8) and (9) into equation (4), R_f can also be represented as

$$R_f = A_w \left(f_{R_{f,ini}} - f_U \right)$$ \hspace{1cm} (10)

Equation (10) is valid for non-ponded agricultural lands as well as urban areas. Equation (10) is not used for ponded crops since re-use and initial return flows are specified explicitly.

The total net return flow that leaves a grid cell is the summation of all return flows from all the agricultural and urban land areas at that cell.

3.7 Generic Moisture Inflow, G

Generic moisture inflow, G, is included in equation (1) to represent any moisture
inflow into the root zone due to a source other than precipitation or irrigation. It is a user-defined time-series data set specified for each computational grid cell. It is given as a unit rate of inflow per unit length of the rooting depth (L/L/T) of the land use type that is being considered. IDC multiplies G by the rooting depth and the length of the simulation time step to convert it into units of length.

It is expected that G will be set to zero in most IDC applications. However, it can be used in cases where the user has estimates of moisture inflow into the root zone from sources other than precipitation and irrigation. For instance, seepage through the levees into the islands of California’s Sacramento-San Joaquin Delta can be represented through G. Another possibility to utilize G is to simulate the effects of fog on meeting the evapotranspirative crop demands.

3.8 Drainage of Rice and Refuge Ponds, \(D_r \)

Rice ponds and seasonal refuges are drained during certain periods of the year. Rice ponds are drained for harvesting at the end of the growing season. Some rice fields may be re-flooded to decompose the rice residue as well as to create habitat for wildlife. Before the growing season begins, these fields are drained again. Similarly, seasonal refuge ponds can be periodically drained to create space for other types of land usage such as farming during growing season. IDC allows the user to simulate such land management practices by requiring time series ponding depths for rice and refuge areas. Any time the ponding depth specified for a time step is less than that specified for the previous time step, IDC computes a unit rate of pond drainage as

\[
D_{r}^{t+1} = \frac{p_{D}^{t} - p_{D}^{t+1}}{\Delta t} \geq 0
\]

(11)
For land use types other than rice and refuges, pond drainage is equal to zero.

3.9 Deep Percolation, D

Deep percolation is the amount of vertical moisture flow that leaves the root zone through its lower boundary. IDC uses a one-dimensional physically-based routing approach to compute D:

\[
D^{t+1} = K \left(\theta^{t+1} Z^{t+1} \right) \frac{dh}{dz} \theta^{t+1} Z^{t+1}
\]

where K is the unsaturated hydraulic conductivity as a function of soil moisture (L/T), h is the pressure head (L), and z is the vertical distance measured from land surface (L).

Assuming that the vertical head gradient is unity, using van Genuchten-Mualem equation (Mualem 1976, van Genuchten 1980) and assuming residual moisture content is negligible, equation (12) can be re-written as

\[
D^{t+1} = D^{t+1}_{rdc} + K_s \left(\frac{\theta^{t+1}}{\theta_T} \right)^{\frac{1}{2}} \left[1 - \left[1 - \left(\frac{\theta^{t+1}}{\theta_T} \right)^{\gamma_m} \right]^m \right]^2
\]

and

\[
m = \frac{\lambda}{\lambda + 1}
\]

\[
D^{t+1}_{rdc} = \begin{cases}
\theta^t (Z^t - Z^{t+1}) & \text{if } Z^t > Z^{t+1} \\
0 & \text{otherwise}
\end{cases}
\]

where \(K_s \) is the saturated hydraulic conductivity (L/T) and \(\lambda \) is the pore size distribution index (dimensionless).
Equation (15) shows that when the rooting depth is decreasing, generally at the harvest time, any moisture that falls outside the rooting depth is converted into deep percolation. However, it should be noted that setting the rooting depth, \(Z \), to zero outside of cropping season will cause incorrect results as IDC will assume that soil has zero storage capacity and will convert all precipitation to either deep percolation or direct runoff. Therefore, it is important to specify a non-zero rooting depth even outside the growing season to properly represent the moisture storage capacity of the soil. Alternatively, one can assume constant rooting depth throughout the entire simulation period. Preliminary tests have shown that although changing rooting depth has an impact on the flow terms as well as the computed water demands at short time periods that are on the order of a few days, over the entire cropping season its cumulative impact is small.

As an alternative to the van Genuchten-Mualem equation, IDC can use Campbell’s approach (Campbell 1974) to represent the unsaturated hydraulic conductivity:

\[
D^{t+1} = D^{t+1}_{rdc} + K_s \left(\frac{\theta^{t+1}}{\theta_T} \right)^{3+\frac{2}{\lambda}} \tag{16}
\]

where the assumption of negligible residual moisture content is applied.

3.10 Evapotranspiration, ET

Calculations of ET are based on the potential ET, \(ET_{pot} \), values specified by the user as time series data for each land use and grid cell combination. Although \(ET_{pot} \) values can be taken as the crop ET under standard conditions, \(ET_c \), described by Allen et al. (1998), they can also be taken as the crop ET under non-standard conditions, \(ET_{adj} \), also described by Allen et al. (1998), to incorporate conditions such as non-uniform irrigation, low soil fertility, salt toxicity, pests, diseases, etc (except the case where the plants are water stressed because
of lack of sufficient water; this situation is simulated dynamically in IDC as discussed below).

IDC computes ET as a function of the soil moisture in the root zone:

\[
ET^{t+1} = \begin{cases}
ET_{pot}^{t+1} & \text{if } \frac{\theta_f - \theta_{wp}}{2} \left(\frac{\theta_f - \theta_{wp}}{2} \right) > 1 \\
\frac{\theta^{t+1} - \theta_{wp}}{\theta_f - \theta_{wp}} \cdot ET_{pot}^{t+1} & \text{if } 0 \leq \frac{\theta^{t+1} - \theta_{wp}}{\theta_f - \theta_{wp}} \leq 1 \\
0 & \text{if } \frac{\theta^{t+1} - \theta_{wp}}{\theta_f - \theta_{wp}} < 0
\end{cases}
\]

(17)

where \(\theta_{wp} \) is the wilting point (L/L) and \(\theta_f - \theta_{wp} \) is the total available water (TAW) (Allen et al. 1998). Equation (17) suggests that if the soil moisture at a given time step is greater than half of TAW, ET will be equal to ET_{pot}. If the soil moisture falls below half of TAW, plants will start experiencing water stress and ET will be less than ET_{pot}. Below wilting point, the ET rate will be zero. The method described by equation (17) is similar to the method described in Allen et al. (1998) to compute a non-standard crop ET under water stress conditions. In Allen et al. (1998), a water stress parameter, \(p \), is defined for each crop which represents the soil moisture content below which the crop starts experiencing water stress. In equation (17), \(p \) is taken as 0.5 regardless of the plant type.
3.11 Change in Soil Moisture due to Change in Land Use Area, $\Delta \theta_a$

IDC allows the user to specify areas for each land use type at each grid cell as time series data. Equation (1) is solved and soil moisture is tracked for each land use type at each cell. Due to different crop characteristics and management practices for each land use, soil moisture will be different for different land use types. To satisfy the global conservation of mass at the modeled domain, it is necessary to keep track of the soil moisture that is exchanged between different land use types as the areas change through the simulation period. $\Delta \theta_a$ is the term that represents this exchange of soil moisture between different land use types.

As an example consider a total of n land use types defined for a grid cell with corresponding areas defined at time step t and $t+1$ as A_i^t and A_i^{t+1}, respectively, where $i=1,\ldots,n$. For land use types whose areas decline or stay the same $\Delta \theta_a$ will be zero (volumetric soil moisture storage will be less for land use types whose areas decrease, but soil moisture depth will be the same for these land use types). On the other hand, land use types whose areas increase will adopt new soil moisture from land use types whose areas diminish. For a land use type j whose area increases by

$$A_j^e = A_j^{t+1} - A_j^t > 0$$

the change in soil moisture due to area change, $\Delta \theta_{a,j}$, is computed as

$$\Delta \theta_{a,j} = \frac{\sum A_i^t \theta_i^t Z_i^t}{A_j^{t+1}} - \frac{\sum A_i^t}{A_j^{t+1}} \theta_j^t Z_j^t$$

$$\Delta \theta_{a,j} = \frac{A_j^t \theta_j^t Z_j^t + A_j^e \theta_j^t}{\sum A_i^t} - \theta_j^t Z_j^t$$

(19)
where A_i^t is the decrease in the area of land use i:

$$A_i^t = A_i^t - A_i^{t+1} > 0$$ \hfill (20)

Equation (19) suggests that after adopting the soil moisture from land use types whose areas decrease, the new soil moisture computed for the land use j is uniformly distributed over the land use area.

In certain situations, the new soil moisture with the adopted moisture from reduced land use areas can be numerically greater than the total porosity. For instance such a case can occur when the area of a crop with short rooting depth extends into the area of a crop with much deeper rooting depth. In this case the new soil moisture is set to total porosity and the moisture above total porosity is converted into deep percolation.

3.12 Solution of the Root Zone Conservation Equation

Equation (1) is non-linear with respect to θ^{t+1}. IDC uses an iterative method that is a combination of bisection and Newton’s methods (Gerald and Wheatley 1994) to solve equation (1). The iterative solution methodology starts and continues with Newton iterations until the estimate for the soil moisture goes above total porosity less 10% of the user-defined convergence tolerance for the iterative solver. At this point, bisection method is used as the iterative method. The reason for this switch between the two methods is that the gradient of the van Genuchten-Mualem equation near saturation becomes very large and this causes problems for Newton’s method. Bisection method has slower convergence but is more robust; therefore it is preferred when soil moisture is close to or above saturation. The switch between Newton’s and bisection methods occurs mostly for rice and refuge areas where soil moisture can be at or numerically above total porosity (representing the ponding conditions).
4 Water Demand

From a plants perspective, water demand (also referred to as the physical water demand in this document) is the amount of irrigation water to satisfy the crop’s evapotranspirative requirement under a specified irrigation management setting that is not met by precipitation. From a water management perspective, it is the amount of irrigation water that needs to be delivered to farms dictated by contractual agreements. This amount may or may not be the same as the physical water demand of the crops.

IDC is designed to address both types of water demands under user-specified climatic and irrigation management settings in regional scale applications. The physical water demand is computed by utilizing the root zone conservation equation (1), whereas the contractual water demands are specified by the user. Physical water demand is calculated only for agricultural crops, refuges and urban lands; water demand is zero for native and riparian vegetation since they are not irrigated.

Below, the methods used by IDC to compute applied water demand for non-ponded and ponded (rice and refuge lands) land use areas are explained.

4.1 Water Demand for Non-Ponded Crops

IDC utilizes an irrigation-scheduling-type approach in computing the water demand for non-ponded crops. Each non-ponded crop at each grid cell is associated with a time series data of irrigation period flag, irrigation trigger minimum soil moisture, irrigation target soil moisture, minimum deep percolation requirement as a fraction of infiltrated applied water, return flow fraction and re-use fraction. IDC also requires the user to specify if the soil moisture at the beginning or at the end of a time step will be used to compute irrigation water demand. For a short simulation time step such as a day using the soil moisture at the
beginning of the time step is appropriate, whereas for a long time step such as a month, it is better to use the soil moisture at the end of the time step. The real-world analogy is that a farmer may check the soil moisture conditions in the morning and decides if the crops need irrigation, while he never bases his decision of irrigating over an entire month on the moisture conditions at the beginning of that month.

The irrigation period flag tells IDC when to compute irrigation water demand for a non-ponded crop. An irrigation period flag of 0 means that it is outside the cropping season and IDC will not compute the irrigation water demand, whereas 1 means that it is growing season and the irrigation water demand will be computed.

First, the water demand calculations in the case when the soil moisture at the beginning of a time step is used will be explained.

At the beginning of a time step, if irrigation period flag is 1, IDC checks if the soil moisture, θ_t, is less than the irrigation trigger minimum soil moisture, $\theta_{\text{min}}^{t+1}$, where θ_{min} is given as time-series fraction of the field capacity:

$$\theta_{\text{min}}^{t+1} = \tau^{t+1} \theta_{\text{min}} \phi$$ \hspace{1cm} (21)

$\theta_{\text{min}}^{t+1}$ is the soil moisture content that corresponds to the maximum allowable depletion (Allen et al. 1998). If θ_t^t is less than $\theta_{\text{min}}^{t+1}$, the irrigation amount to raise the soil moisture up to irrigation target moisture, $\theta_{\text{trg}}^{t+1}$, is computed by setting θ^{t+1} in equation (1) to $\theta_{\text{trg}}^{t+1}$ and re-writing it for A_w (in IDC irrigation water demand is equivalent to the applied water since IDC assumes that water is available to meet the irrigation water demand at all times):
Several points need to be highlighted for equation (22):

1. Pond drainage flow, \(D_r \), is set to zero since equation (22) is written for non-ponded crops.

2. \(\text{ET}_{\text{trg}}^{t+1} \) and \(\text{DP}_{\text{trg}}^{t+1} \) represent the ET and deep percolation rates, respectively, at the target soil moisture.

3. Equation (10) is substituted for return flow, \(R_f \).

Equation (22) is the expression for the amount of applied water that will raise the soil moisture up to target soil moisture while taking into account the contribution of precipitation, irrigation efficiency measures \(f_{R_{f,ini}} \) and \(f_U \) as well as the moisture depleting effects of deep percolation and ET.

By default, IDC uses field capacity as the target soil moisture. However, the user can optionally specify a fraction of the field capacity as the target soil moisture during irrigation to simulate the effects of deficit irrigation (Fereres and Soriano, 2007; Kirda, 2002). By setting the irrigation trigger minimum soil moisture and the irrigation target soil moisture to values that are lower than those for optimal irrigation, the user can simulate the deficit irrigation practices.

In the case where the soil moisture at the end of a time step is used for water demand calculations, IDC initially assumes that \(A_{w}^{t+1} \) is zero, and solves equation (1) for \(\theta^{t+1} \). If
\(\theta^{t+1} Z^{t+1} \) is less than \(\theta_{\text{min}}^{t+1} Z^{t+1} \), there is a non-zero irrigation water demand and IDC uses equation (22) to compute this demand.

It is common practice to apply additional irrigation water on the fields to flush the salts from the soil. To simulate this practice, IDC allows the user to specify an optional time-series minimum deep percolation factor for each non-ponded crop at each grid cell. The deep percolation factor is defined as a fraction of the infiltrated applied water:

\[
D_{\text{min}} = f_D \left(A_w - R_f \right)
\]

(23)

where \(D_{\text{min}} \) is the minimum deep percolation required \((L/T)\) and \(f_D \) is the minimum deep percolation fraction \((\text{dimensionless})\). It should be noted that \(f_D \) is different than leaching fraction in that leaching fraction is defined for a set of irrigation events after which the soil salinity and water flow in the root zone reaches an equilibrium \((\text{Ayers and Westcot, 1985; Dudley et al., 2008})\) whereas \(f_D \) in IDC is valid only for the time step when the irrigation event takes place.

After water demand is computed using equation (22), IDC checks if deep percolation is greater than the minimum deep percolation, if \(f_D \) is supplied. If minimum deep percolation is not achieved, it computes a new water demand that will raise the soil moisture to the irrigation target soil moisture while generating minimum deep percolation. This is achieved by writing equation (23) for \(A_w - R_f \), substituting it into equation (1), and solving the resulting non-linear equation for \(\theta^{t+1} \):

\[
\theta^{t+1} Z^{t+1} = \theta^{t} Z^{t} + \Delta t \left[p^{t+1} - R_{p}^{t+1} + G^{t+1} Z^{t+1} - D_{\text{min}}^{t+1} \left(1 - \frac{1}{f_{D}^{t+1}} \right) - ET^{t+1} \right] + \Delta \theta_{a}^{t+1}
\]

(24)
In writing equation (24), pond drainage, D_r, is set to zero since the equation is written for non-ponded crops only and ET^{t+1} is the ET rate at θ^{t+1}. It should also be noted that D_{min} is a function of θ^{t+1} in equation (24).

Equation (24) is solved for θ^{t+1} iteratively using Newton’s method. Once the solution is obtained, the water demand is computed as

$$A_w^{t+1} = \frac{D_{\text{min}}^{t+1}}{f_D^{t+1} \left[1 - \left(f_R^{t+1} - f_U^{t+1} \right) \right]}$$

(25)

where D_{min}^{t+1} is computed at θ^{t+1} that is obtained by solving equation (24).

Deep percolation has an upper limit that is equal in magnitude to the saturated hydraulic conductivity, K_s, of the soil (see equation (13)). Therefore, D_{min} is limited by K_s. If it is computed to be larger than K_s, it is adjusted down to K_s and the user-specified minimum deep percolation factor, f_D, is overridden.

Alternatively, IDC allows the user to specify water demand to address the contractual rather than the physical water demands. In this case, equations (22) and (25) are bypassed and user-specified water demands are used. However, it is likely that the specified water demands will be less than or greater than the physical water demands. In either case, IDC uses the specified values in equation (1) to route the moisture through the root zone. In the case that the specified demands are less than their physical counterparts, IDC will allow ET to fall below ET_{pot}, assuming that the target irrigation soil moisture is equal to the field capacity. If they are greater than the physical demands, IDC computes increased soil moisture, deep percolation and return flow, again by the use of equation (1).
The inclusion of deep percolation in equation (22) shows that the water demand, among other factors, depends also on the soil type where the crops are planted. The same crop under the same management factors and for the same yield will require more water if it was planted on a sandy soil than it was planted on a clayey soil.

4.2 Water Demand for Ponded Crops

The water demand computations for ponded crops are driven by the pond depths specified by the user except during decomposition periods for rice lands where non-flooded decomposition practices are followed. For the periods when a non-zero ponding depth is specified, IDC computes the applied water demand that will completely saturate the soil and create a pond with the specified depth after taking into account the contribution of precipitation in a user-specified crop management setting. First an initial estimate of water demand is computed by setting drainage flow and net return flow to zero, deep percolation to saturated hydraulic conductivity, ET to ET_{pot}, \(\theta^{t+1} \) to total porosity plus the pond depth in equation (1) and rearranging the equation for \(A_w \):

\[
A_{w,ini}^{t+1} = \frac{\theta_T Z + P_D^{t+1} - \theta^t Z - \Delta \theta_a^{t+1}}{\Delta t} - P_p^{t+1} + R_p^{t+1} - G^{t+1} Z + K_s + ET_{pot}^{t+1} + D_r^{t+1} > 0 \tag{26}
\]

where \(A_{w,ini} \) is the initial estimate of the applied water demand (L/T) and \(P_D \) is the pond depth (L). As stated previously, IDC assumes constant rooting depth for ponded crops, therefore the time index for \(Z \) in equation (26) does not appear. There is water demand only if the result of equation (26) is greater than zero. As the second step, the drainage flow is computed using equation (11). Then, the final applied water demand is computed as

\[
A_w^{t+1} = A_{w,ini}^{t+1} + R_r^{t+1} - U^{t+1} > 0 \tag{27}
\]
where, as mentioned earlier, \(R_{\text{ini}} \) and \(U \) are specified as unit flow rates for rice lands and refuges.

Equations (26) and (27) are used for seasonal and permanent refuge areas as well as for rice lands where flooded decomposition practices are followed. For rice lands where non-flooded decomposition practices are followed, the same approach is used during growing season; during decomposition period user specified water application amounts are utilized.

As with non-ponded crops, if the user specifies water demand IDC bypasses its computation and substitutes the specified value into equation (1).

4.3 Evapotranspiration of Applied Water, ETaw

The portion of the crop evapotranspiration that is satisfied by irrigation water is referred to as the evapotranspiration of applied water (ETaw). The crop evapotranspiration can be satisfied by moisture storage already available in the soil, precipitation, applied water, and if available, other sources of moisture, \(G \). Moisture storage is comprised of previous precipitation events and irrigation activities as well as moisture inflows from other sources. Therefore, one can view ETaw as having two components: one where the irrigation satisfies the crop ET requirement almost instantaneously (e.g. over a period of few minutes or hours), and one where a portion of the applied water is stored in the soil and satisfies the crop ET over an extended period of time (e.g. over a period of few days or weeks).

For proper prediction, IDC keeps track of the portion of soil moisture that is supplied by irrigation and effectively simulates both components of ETaw. After equation (1) is solved and all flow components are calculated, ETaw and the soil moisture storage due to irrigation are computed using the following set of expressions:
\[\alpha_{A_w} = \frac{\theta_{A_w}^t Z^t + \Delta t \left(A_{w}^{t+1} - R_{f}^{t+1} \right)}{\left(\theta_{p}^t + \theta_{A_w}^t + \theta_{G}^t \right) Z^t + \Delta t \left(p^{t+1} - R^{t+1} + A_{w}^{t+1} - R_{f}^{t+1} + G^{t+1} Z^{t+1} \right)} \]

(28)

\[\text{ETaw}^{t+1} = \alpha_{A_w} \text{ET}^{t+1} \]

(29)

\[\theta_{A_w}^{t+1} Z^{t+1} = \theta_{A_w}^t Z^t + \Delta t \left[A_{w}^{t+1} - R_{f}^{t+1} - \alpha_{A_w} \left(D_r^{t+1} + D^{t+1} \right) - \text{ETaw}^{t+1} \right] + \Delta \theta_{a,A_w}^{t+1} \]

(30)

where \(\alpha_{A_w} \) is the ratio of stored applied water plus the infiltrated applied water to the total moisture storage plus total infiltration, and \(\Delta \theta_{a,A_w} \) is the moisture storage due to irrigation that is acquired from adjacent land use areas because of change in land use area. Equations (28) - (30) suggest that all root zone flow components are proportioned between flow due to precipitation, flow due to applied water and flow due to other sources of moisture using the fraction defined in equation (28), which are used to compute the moisture storage due to irrigation.

\(\alpha_{A_w} \) represents both the instantaneous and the long-term contributions of irrigation to ETaw and other flow terms. The part with \(\Delta t \left(A_{w}^{t+1} - R_{f}^{t+1} \right) \) at the numerator represents the instantaneous contribution, whereas the part with \(\theta_{A_w}^t Z^t \) represents its contribution that takes place over an extended period of time. Here, the term “instantaneous” refers to any event that takes place over a single simulation time step, \(\Delta t \).

When irrigation period flag is 0 representing out-of-growing-season, ETaw is still computed to track \(\theta_{A_w} \) (see equation (30)). This is because evapotranspiration continues to occur outside the irrigation period due to soil evaporation and transpiration from non-agricultural crops such as weeds.
4.4 Effective Precipitation, ETp

Effective precipitation, ETp, is the portion of precipitation that is available to meet crop evapotranspiration. It does not include direct runoff, deep percolation or evaporation before the crop can use it (USDA 1997). Similar to ETaw, ETp represents the instantaneous contribution of precipitation to satisfy the crop evapotranspiration as well as its contribution over an extended period of time. IDC uses the following expressions to compute ETp:

\[
\alpha_p = \frac{\theta_p Z^t + \Delta t \left(P^{t+1} - R^{t+1} \right)}{\left(\theta_p + \theta_A^t + \theta_G^t \right) Z^t + \Delta t \left(P^{t+1} - R^{t+1} + A^{t+1}_w - R^{t+1}_f + G^{t+1} Z^{t+1} \right)}
\]

\[
ETp^{t+1} = \alpha_p ET^{t+1}
\]

\[
\theta_p^{t+1} Z^{t+1} = \theta_p Z^t + \Delta t \left[P^{t+1} - R^{t+1} - \alpha_p \left(D^{t+1}_f + D^{t+1} \right) - ETp^{t+1} \right] + \Delta \theta_{a,p}^{t+1}
\]

where \(\alpha_p \) is the ratio of stored precipitation plus the infiltration of precipitation to the total moisture storage plus the total infiltration, and \(\Delta \theta_{a,p} \) is the moisture storage due to precipitation that is acquired from adjacent land use areas because of change in land use area.

4.5 Evapotranspiration due to Other Sources, ETG

ETG is the portion of the generic, user-defined source of moisture that is available to meet the evapotranspirative demand. Similar to ETaw and ETp, it represents the instantaneous contribution of the generic source of moisture to satisfy the crop evapotranspiration as well as its contribution over an extended period of time. IDC uses the following set of expressions to compute ETG:

\[
\alpha_G = \frac{\theta_G Z^t + \Delta t \left(G^{t+1} Z^{t+1} \right)}{\left(\theta_p + \theta_A^t + \theta_G^t \right) Z^t + \Delta t \left(P^{t+1} - R^{t+1} + A^{t+1}_w - R^{t+1}_f + G^{t+1} Z^{t+1} \right)}
\]
\[ET_G^{t+1} = \alpha_G ET^{t+1} \]

\[\theta_G^{t+1} Z^{t+1} = \theta_G Z^t + \Delta t \left[G^{t+1} Z^{t+1} - \alpha_G \left(D_r^{t+1} + D_I^{t+1} - ET_G^{t+1} \right) \right] + \Delta \theta_{a,G}^{t+1} \]

where α_G is the ratio of stored moisture due to generic source plus the infiltration of the generic moisture to the total moisture storage plus the total infiltration, and $\Delta \theta_{a,G}$ is the moisture storage due to the generic moisture source that is acquired from adjacent land use areas because of change in land use area.

5 Example 1: Hypothetical Scenario

To test and analyze its results, IDC was run for a hypothetical case where tomatoes were the irrigated crop. Additionally, to test the irrigation scheduling logic built into IDC, it was compared, when applicable, to the CUP model developed jointly by DWR and UC Davis (Orang et al. 2004). CUP is a graphical user interface driven spreadsheet application that was developed to improve the dissemination of crop evapotranspiration (ET_c) information to California growers and water purveyors. The program uses monthly means of solar radiation, maximum and minimum temperature, dew point temperature, wind speed, and daily rainfall data to compute and apply ET_c values on a daily basis to determine crop water requirements.

The testing and analysis of IDC results were performed in several stages. The first stage included a very simple test case with minimum amount of IDC features included. In each consecutive stage another feature of IDC was included in the test and the effects of the feature on the results were analyzed.

For this example, tomatoes were chosen as the crop for which irrigation water
requirements were calculated from January 1, 1996 to December 31, 1996. The growing season for tomatoes was April 1 to August 31. The generic source of moisture was set to zero. For a specified set of weather data, CUP computed daily ET_c values that were input into IDC. Available water holding capacity (the difference between field capacity and wilting point) was 0.14 mm/mm, the rooting depth was set to 1524 mm and the maximum allowable soil moisture depletion was set to 50% of the field capacity. Using soil properties and crop specific information, CUP computed yield threshold depletion and the corresponding allowable moisture depletion (Snyder et al. 2004). The moisture content that corresponded to the allowable soil moisture depletion computed by CUP was input as the irrigation trigger moisture content into IDC. In IDC, the wilting point, field capacity, total porosity and pore size distribution index are taken to be 0.000 mm/mm, 0.270 mm/mm, 0.463 mm/mm and 0.418, respectively. These values were taken from data published by Rawls et al. (1982) for a loam soil. The initial soil moisture content was set equal to field capacity. It was also assumed in IDC that 50% of the initial soil moisture was due to precipitation.

5.1 **Zero Precipitation, Deep Percolation and Return Flow**

CUP computes runoff due to precipitation differently than IDC. It also doesn’t incorporate deep percolation and agricultural return flow into the computation of applied water. To simulate the similar processes, the precipitation in both programs, and saturated hydraulic conductivity and return flow factor in IDC were all set to zero. Figure 3 shows a comparison of IDC and CUP results for this case. In Figure 3, FC is the field capacity, SMmin is the irrigation trigger minimum soil moisture computed by CUP and used as input to IDC, AW_IDC is the applied water computed by IDC, AW_CUP is the applied water
computed by CUP, SM_IDC is the soil moisture computed by IDC, SM_CUP is the soil moisture computed by CUP, and ETc is the crop ET that is computed by CUP and used as input to IDC.

In both models, initial soil moisture is at field capacity. Until April 1, ETc for bare soil and non-agricultural plants deplete the soil moisture below the irrigation trigger minimum soil moisture. However, since growing season does not start until April 1, irrigation is not triggered. On April 1, when the growing season starts, the first irrigation event is triggered and both models raise the soil moisture up to field capacity. Soil moisture and the magnitude of applied water are almost exactly the same until the second irrigation event towards the end of May. Here, a difference between IDC and CUP becomes apparent.

Figure 3. Comparison of IDC results to CUP results for zero precipitation, deep percolation and return flow
The second irrigation event occurs on May 28 for CUP and on May 29 for IDC. At the beginning of May 28 both models have soil moisture that is above the irrigation trigger minimum soil moisture. CUP predicts that soil moisture at the end of the day will be less than the minimum moisture and initiates an irrigation event. IDC, on the other hand, initiates an irrigation event only based on the soil moisture at the beginning of the day. At the beginning of May 29, the soil moisture is less than the minimum moisture in IDC and this is when IDC initiates an irrigation event. The effect of this difference between the two models in deciding when to irrigate accumulates throughout the growing season until the simulated soil moistures are visibly different. In fact, CUP initiates a total of 8 irrigation events that amounts to 774 mm of applied water throughout the growing season whereas IDC initiates 7 events that amounts to 712 mm.

Although there are some differences between IDC and CUP results, in general, this comparison shows that the irrigation scheduling logic built into IDC works properly. IDC allows the depletion of soil moisture until it becomes less than the irrigation trigger moisture. This is when it initiates an irrigation event to raise the moisture up to the target moisture level (field capacity, in this case).

5.2 Zero Deep Percolation and Return Flow

At this stage of testing IDC, daily precipitation data for calendar year 1996 was used. With the inclusion of this data, CUP computed a new set of ETc and irrigation trigger minimum soil moisture which were used as input to IDC. The results for this stage are shown in Figure 4.
In this stage, another difference between IDC and CUP is shown. CUP never allows the soil moisture to go above field capacity; the infiltration of precipitation is adjusted so that soil moisture stays below or at the field capacity. IDC uses SCS curve number method (USDA 2004) to compute the direct runoff and, consequently, infiltration from precipitation (a curve number of 82 was used for this example). It also allows soil moisture to go above field capacity. This is because past CADWR experiences in coupled root zone, groundwater and stream flow modeling showed that forcing the soil moisture to be at or below field capacity at every time step required increasing direct runoff or deep percolation. This approach had adverse effects on the timing of recharge into groundwater and surface runoff into the streams. Furthermore, it has been observed in the field that considerable root zone

Figure 4. Comparison of IDC results to CUP results for zero deep percolation and return flow
drainage can occur beyond three days (Ritchie, 1981) suggesting that the soil moisture stays above field capacity for as long as the drainage continues.

Figure 4 shows that the soil moisture in IDC rises above field capacity with the winter rains whereas CUP limits it with field capacity by decreasing the infiltration of precipitation. For the entire year, IDC and CUP generate 69 mm and 141 mm of direct runoff, respectively, out of 465 mm of precipitation. Although, with different values for curve number, the direct runoff can be changed in IDC, this example shows the effect of allowing the soil moisture to rise above field capacity. With the higher moisture content at the beginning of the growing season, IDC does not initiate an irrigation until June 14, whereas CUP initiates the first irrigation on June 1. For the entire season, the application water for IDC and CUP are 547 mm and 628 mm, respectively.

5.3 Zero Return Flow

At this stage of testing, hydraulic conductivity of the loam soil was set to 1.32 cm/hour (Rawls et al. 1982) to simulate the deep percolation from the root zone. Since deep percolation is not simulated in CUP, the IDC results were compared to the IDC results from previous stage.

Figure 5 shows the results for this test case. The annual deep percolation is 135 mm. When compared to Figure 4, it can be seen that the soil moisture increase during the winter months is less due to the moisture depleting effects of deep percolation.

Inclusion of the deep percolation in the simulation also decreases the direct runoff from precipitation; 57 mm annually in this case versus 69 mm with zero deep percolation. This result is expected since depleting the soil moisture through deep percolation leads to increased empty storage to be filled by precipitation.
The annual applied water in this case is 666 mm compared to 547 mm with no deep percolation. This result is also in line with expectations that increasing the deep percolation should also increase the amount of applied water to achieve the same crop yield. In this case, when raising the moisture to field capacity, applied water not only counter-balances the moisture depleting effect of evapotranspiration but also that of deep percolation.

5.4 Zero Return Flow and 1% Minimum Deep Percolation Fraction

In this stage, a minimum deep percolation of 1% of infiltrated applied water is imposed. Figure 6 shows that every time an irrigation event is triggered, the soil moisture is raised above field capacity to a moisture that will create a deep percolation that is equal to 1% of the infiltrated applied water on that day. Since the deep percolation continues beyond
the day of the irrigation, the total deep percolation from irrigation is larger than 1%. During the growing season, the total deep percolation amounts to 70 mm with 822 mm of applied water. Assuming that the deep percolation is entirely due to irrigation during the growing season, this leads to a leaching fraction of 9%.

5.5 15% Return Flow Fraction

In this case, the minimum deep percolation fraction was set to zero but the return flow fraction was set to 15% of applied water. The results for this case are shown in Figure 7. When compared to Figure 5 of section 5.3 (zero return flow with zero minimum deep percolation fraction), it can be seen that the only difference is in the amount of applied water. The total applied water in this case was 783 mm compared to 666 mm in the case with zero
return flow and minimum deep percolation fraction (see section 5.3). The return flow amount was 117 mm, equal to the difference between the applied water in two test cases. The return flow is taken out of the total applied water and it does not affect the soil moisture dynamics.

5.6 Deficit Irrigation

As a final test case, deficit irrigation conditions were simulated by setting the irrigation target moisture to 60% of field capacity and the irrigation trigger minimum soil moisture to 50% of those used in previous test case (see section 5.5). The results for this case are shown in Figure 8. SMtarget and ET in Figure 8 represent the irrigation target soil moisture and the actual ET, respectively. Deficit irrigation is generally recommended when...
the losses due to the decrease in the crop yield because of unmet crop ET is surpassed by the gains from conserving irrigation water (Kirda, 2002). In this test case, the total applied water and crop ET were 594 mm and 718 mm, respectively, compared to 783 mm and 764 mm, respectively, in the non-deficit irrigation scenario simulated in section 5.5. These results show that a 24% reduction in applied water only caused a 6% reduction in the crop ET.

5.7 Additional Comments on Test Cases

Some of the important seasonal (values on the left) and annual (values in parentheses) flow terms from each simulated scenario are listed in Table 1. The scenario simulated in section 5.1 (zero precipitation, deep percolation and return flow) is not included in the table since the crop ET is different than the other scenarios and it would be difficult to make
meaningful comparisons with other scenarios. In Table 1, AW is the applied water, ET is the actual ET, Rp is the direct runoff, Rf is the net return flow, D is the deep percolation, ETaw is the ET of applied water, ETP is the effective precipitation and IE is the irrigation efficiency expressed as ETaw divided by AW.

The following are several comments and conclusions based on the values listed in Table 1:

1. Deep percolation has a direct impact on the irrigation requirement, higher the deep percolation more applied water is needed to meet the crop ET (see AW values for scenarios simulated in sections 5.2, 5.3 and 5.4). However, deep percolation and applied water are not linearly related since a portion of the applied water is stored in the soil.

2. Direct runoff from precipitation decreases as deep percolation increases (see Rp values for sections 5.2 and 5.3). This is because deep percolation depletes the soil moisture storage allowing more precipitation to infiltrate. However, as more water is applied to increase the soil moisture above field capacity, increasing the deep Table 1. Summary of IDC results for the simulated scenarios (values on left are for the growing season, values in parantheses are for the entire calendar year). All values except IE are in mm.

<table>
<thead>
<tr>
<th>Flow Term</th>
<th>Scenario</th>
<th>5.2</th>
<th>5.3</th>
<th>5.4</th>
<th>5.5</th>
<th>5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW</td>
<td>D=0;Rf=0</td>
<td>546</td>
<td>666</td>
<td>822</td>
<td>783</td>
<td>594</td>
</tr>
<tr>
<td>ET</td>
<td>Rf=0</td>
<td>764</td>
<td>764</td>
<td>764</td>
<td>764</td>
<td>718</td>
</tr>
<tr>
<td>Rp</td>
<td>Rf=0;Dmin=1%</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Rf</td>
<td>Rf=15%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>117</td>
<td>89</td>
</tr>
<tr>
<td>D</td>
<td>Deficit Irrig.</td>
<td>0</td>
<td>43</td>
<td>69</td>
<td>43</td>
<td>19</td>
</tr>
<tr>
<td>ETaw</td>
<td>0</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>397</td>
</tr>
<tr>
<td>ETP</td>
<td>336</td>
<td>289</td>
<td>289</td>
<td>289</td>
<td>289</td>
<td>321</td>
</tr>
<tr>
<td>IE</td>
<td>78%</td>
<td>71%</td>
<td>59%</td>
<td>61%</td>
<td>67%</td>
<td></td>
</tr>
</tbody>
</table>
percolation for leaching of salts, higher values of direct runoff are observed due to soil moisture being above field capacity at the end of growing season (see Figure 6 and annual Rp values for sections 5.3 and 5.4).

3. Return flow affects the irrigation requirement but not the ET, deep percolation, ETaw and ETp (see relevant flow terms for sections 5.3 and 5.5). As expected, increasing return flow decreases irrigation efficiency.

4. Comparing IE values for sections 5.3 and 5.4, it can be seen that applying more irrigation water for the purposes of leaching decreases the irrigation efficiency. However, an alternative definition of irrigation efficiency includes not only ETaw but also the losses if they are beneficial such as deep percolation for leaching (Burt et al., 1997). Although beneficial deep percolation cannot immediately be quantified through IDC output values, IE would be higher for section 5.4 when the alternative definition of the irrigation efficiency is considered. As a rough estimate, it can be assumed that the difference between the annual deep percolation values from sections 5.3 and 5.4 is the beneficial deep percolation triggered by additional applied water. Then the IE expressed by Burt et al. (1997) can be computed as

\[
IE = \frac{ETaw + D_{\text{beneficial}}}{AW} = \frac{484 + 226 - 135}{822} \times 100 = 70\%
\]

(37)

5. Deficit irrigation is one way of increasing the irrigation efficiency (Kirda, 2002).

Table 1 shows a 6% increase in the IE (see IE values for scenarios 5.5 and 5.6) when a deficit irrigation scenario is simulated.

6. IDC uses the ratio of the soil moisture due to irrigation to the total soil moisture storage in computing the ETaw (see equation (29)) and hence the IE. IDC allows the user to input initial soil moisture content due to irrigation and precipitation. The
ETaw values at the early stages of the simulation period are largely impacted by the user-defined initial proportioning of the moisture between precipitation and irrigation. Therefore, for a modeling study that addresses a short simulation period such as this example, IE values will be affected by the initial soil moisture estimates. Since the true portioning of the moisture between irrigation and precipitation is hard to estimate, it is advisable to include a “spin-up” period of a few years in IDC runs to achieve a more realistic mixture of stored moisture due to precipitation and applied water. This spin-up period will minimize the adverse effects of incorrect estimates of initial proportioning of the soil moisture storage on the IE calculations.

6 Example 2: A Real-World Application

For this example IDC was used to simulate the irrigation water requirements and root zone flow terms over a period of four water years (October 1, 1997 to September 30, 2001) at a section of California’s Central Valley (Figure 9) using field data as input. The reason for the selection of this area was that another project, CalSim 3.0 hydrology development, also addressed the same area. CalSim is the CADWR’s model used to simulate California State Water Project (SWP) and the Central Valley Project (CVP) operations. An earlier version of IDC was used during the CalSim 3.0 project so a large portion of the input data for this example was already developed. Furthermore, the modeled area intersected with seven Detailed Analysis Units (DAUs) (Figure 10). DAUs are the smallest study areas used by CADWR for analyses of water demand and supply, generally defined by hydrologic features or boundaries of organized water service agencies. CADWR has collected and developed
extensive data sets for these regions. To test their accuracy, IDC results were compared to data developed for the seven DAUs that the model area intersects.

Figure 9. Model area and the simulation grid for Example 2

The 2805 km² model area and the finite element grid for this example are shown in Figure 9. The simulation grid, which includes 2622 cells, was created using a mesh generator developed by CADWR as an add-on for ESRI’s ArcGIS software. The part of each DAU that intersected with the model area was designated as an individual subregion (Figure 10) where subregions in IDC are used for aggregation and reporting of the simulation results.
The soil physical properties were compiled using the Natural Resources Conservation Service’s (NRCS) Soil Survey Geographic Database (SSURGO). The soils map for the modeled area is shown in Figure 11 without the legend due to highly complex soil structure. Using the Soil Data Viewer software available from NRCS, the soil physical properties (field capacity, total porosity, saturated hydraulic conductivity and soil hydrologic group) were first averaged over soil horizons for each soil component. Properties defined for each component were then averaged for each soil map unit. Finally, properties defined for map units were intersected with simulation grid cells. Since each grid cell intersected with multiple map units, the physical soil properties were further area-averaged over grid cells to end up with a single value for each soil property for each element. The dominant surface soil texture for each grid cell was also identified and the arithmetic mean values for pore size distribution
index listed in Rawls et al. (1982) were assigned to matching soil textures. Wilting point for each cell was set to zero.

The land-use map for the model area was available as a Geographic Information System (GIS) layer (Figure 12). The agricultural crops were grouped into 20 non-ponded crop types including fallow or idle areas, and rice fields. The modeled area also included urban areas, wildlife refuges and native vegetation. Total area of water and non-irrigated agricultural lands were minor, 2% and 4% of the total modeled area, respectively. Therefore these land-use types were incorporated into the lands with native vegetation (Figure 12). The land-use map was intersected with the finite element grid and the area of each land-use type over every grid cell was computed.
Precipitation data that was developed for Calsim 3.0 project using the PRISM climate data (PRISM, 2009) was utilized in this example.

ET data for each crop at each DAU obtained from DPLA changed from month to another and from year to year. However, it was zero for particular crops when they were not planted in certain years. On the other hand, the land-use areas used in this test was constant and did not change from year to year. Therefore, matching ET data from DPLA with constant land-use areas created a problem: in some years zero ET was assumed for land-use types whose area was not zero. To avoid this problem, ET data for each land use at each grid cell was obtained from the Calsim 3.0 project on a monthly basis. It changed from one

Figure 12. Land-use types in the modeled area
month to another but the same monthly values were used for each water year.

Rice operations data such as ponding depths and return flow depths were all taken from Calsim 3.0 study whose source was the Northern District of CADWR.

Even though the irrigation water demand data for modeled DAUs obtained from DPLA was for water years 1998 to 2001, IDC run was started from October 1, 1990; i.e. a spin-up period of eight years was used to ensure that the mixture of soil moisture storage due to irrigation and precipitation was realistic.

6.1 Results and Discussion

The data obtained from DPLA listed crop irrigation requirements for non-ponded agricultural crops and rice as well as ETc for each DAU as unit rates in terms of acre-feet/acre. To be able to compare to DPLA values, IDC results were also converted to unit rates. Instead of comparing results for individual crops, the total irrigation requirements for each DAU for non-ponded crops computed by IDC were compared to total irrigation requirements for non-ponded crops obtained from DPLA. Irrigation requirement for rice from IDC and DPLA was compared individually since rice irrigation requires much more water than non-ponded crops.

Precipitation is one of the major drivers of the flow processes in IDC. Figure 13 shows the annual precipitation for each DAU.

The Soil Data Viewer from NRCS allows different ways of averaging of the soil physical properties. Also each soil physical property is assigned a lower and upper limit as well as a representative value. Combining the lower, upper and representative values with different averaging methods, one can obtain different values for each soil map unit. Figure 14 and Figure 15 show the simulated irrigation water requirements for non-ponded crops at
DAU 142 and for rice in DAU 163, respectively, for varying average saturated hydraulic conductivities (K_{sat}). These DAUs were selected for analysis because DAU 142 had the largest percent non-ponded crop acreage (88% of the total modeled area of the DAU) and DAU 163 had the largest percent rice acreage (24% of the total modeled area of the DAU).

Figure 14 shows results for four water years whereas Figure 15 shows those only for water year 2000 because there was no visible difference in the results from one year to another for rice irrigation requirements.

It can be seen that while irrigation water requirement for non-ponded crops is not extremely sensitive to K_{sat} (Figure 14), it is very sensitive in the case of rice (Figure 15). This is expected since rice is grown under saturated conditions. However, even though K_{sat} values shown in Figure 15 were computed using the NRCS data, larger K_{sat} values lead to
unreasonably high values of irrigation requirements for rice. In fact, using different averaging techniques featured in the NRCS Soil Data Viewer on upper, lower and representative K_{sat} values listed in the SSURGO database, the smallest average K_{sat} value obtained was 0.45 micrometers/sec. By contrast, DPLA assumes an average of 0.01 micrometer/sec (equivalent to 1 inch/month) percolation from rice fields in their analysis. This value is in line with other sources. For instance, Williams (2004) reports deep percolation at rice fields between 0.012 to 0.048 micrometers/sec (1.2 to 4.8 inches/month). Assuming that these rates represent the K_{sat} values, the smallest value obtained by averaging the data from SSURGO is one order of magnitude larger leading to large simulated irrigation requirements for rice. Although a visual inspection of SSURGO data showed that there were

Figure 14. Seasonal irrigation water requirement versus saturated hydraulic conductivity for non-ponded crops at DAU 142
K\text{sat} values as low as 0.001 micrometers/sec, this example shows that one needs to exercise caution when assigning K\text{sat} values to grid elements where rice is grown.

To test how IDC performs for rice fields with soil properties suggested by other sources, grid cells that had rice fields were assigned K\text{sat} values of 0.01, 0.05 and 0.1 micrometers/sec. The irrigation requirement for rice computed by IDC for water year 2000 was 4.6, 6.4 and 8.7 ac-ft/ac for K\text{sat} values of 0.01, 0.05 and 0.1 micrometers/sec, respectively. For comparison purposes, DPLA reports 5.8 ac-ft/ac and Williams (2004) reports an average value of 6 to 6.5 ac-ft/ac which can vary from 4 to 8 ac-ft/ac or more. This comparison suggests that IDC is capable of producing reasonable values for irrigation requirements at rice fields when grid cell K\text{sat} values are set properly. In contrast, the rice

\textbf{Figure 15.} Seasonal irrigation water requirement versus saturated hydraulic conductivity for rice at DAU 163 for water year 2000
irrigation requirement computed by IDC with the K_{sat} value at grid cells with rice set to the minimum values obtained by averaging the SSURGO data (0.45 micrometers/sec on average) was 13.6 ac-ft/ac.

As mentioned earlier, irrigation water requirement for non-ponded crops is not very sensitive to the changes in K_{sat} values (Figure 14). Figure 16 shows the seasonal irrigation water requirement (i.e. applied water) versus pore size distribution index, λ, for DAU 142 at different water years. For each soil texture, Rawls et al. (1982) list lower and upper limits as well as a representative value for λ. To generate Figure 16, IDC was run with the K_{sat} values computed by averaging representative values from SSURGO database combined with low, representative and high values of λ listed by Rawls et al. (1982). To gage the sensitivity of

Figure 16. Seasonal irrigation water requirement versus pore size distribution index for non-ponded crops at DAU 142
irrigation requirement to K_{sat} and λ values, linear best-fit curves were computed for
simulation results shown in Figure 14 and Figure 16, respectively; high gradient of the best-fit curve represented high sensitivity. The gradient of the best-fit line for K_{sat} versus
irrigation requirement varied from 0.0007 for year 2000 to 0.014 for year 1998, whereas for
λ versus irrigation requirement it varied from 0.505 for year 2001 to 2.169 for year 1998.

As a summary, one needs to choose K_{sat} values carefully for grid cells where rice is
grown. K_{sat} values will not affect the irrigation requirements for non-ponded crops in these
cells because they are insensitive to changes in K_{sat} values. On the other hand, to change the
irrigation requirement for non-ponded crops one can modify λ with minimal effect on the
values computed for rice.

Table 2 shows a general comparison of simulation results for non-ponded crops
compared to DPLA values when K_{sat} at grid cells with rice was set to 0.01 micrometers/sec.
Deep percolation from DPLA was not available so these values are shown as n/a (not
applicable). One can see in Table 2 that the annual ET rates from DPLA change from one
year to another, whereas IDC values are constant. This difference is likely to cause other
values to be different as well. Furthermore, precipitation data used in DPLA analysis was
not available. It was also observed that some crops that were present in some subregions in
IDC had zero acreage in DPLA’s data. The likelihood of precipitation data being different
from IDC data along with different ET rates and different crop areas is responsible for some
of the differences among other values such as applied water. Also, ET_{aw} is constantly lower
in IDC than in DPLA data, whereas ET_{p} is higher. This means that DPLA values will lead to
a higher irrigation efficiency than IDC values. This difference is likely due to different
methods used for computing ET_{aw} and ET_{p} as well as different ET and precipitation input
Table 2. Comparison of IDC results for non-ponded crops to the values obtained from DPLA with K_{sat} values at cells with rice set to 0.01 micrometers/sec (all values are in ac-ft/ac; n/a = not applicable)

<table>
<thead>
<tr>
<th>Water Year</th>
<th>DAU</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>2.65</td>
<td>2.18</td>
<td>1.74</td>
<td>1.66</td>
<td>1.16</td>
<td>1.24</td>
<td>1.49</td>
<td>0.94</td>
<td>0.63</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>2.71</td>
<td>2.68</td>
<td>2.10</td>
<td>1.91</td>
<td>1.23</td>
<td>1.50</td>
<td>1.48</td>
<td>1.17</td>
<td>1.09</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>2.34</td>
<td>2.19</td>
<td>1.50</td>
<td>2.04</td>
<td>1.02</td>
<td>1.47</td>
<td>1.32</td>
<td>0.72</td>
<td>0.33</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>2.51</td>
<td>2.38</td>
<td>1.20</td>
<td>2.05</td>
<td>0.85</td>
<td>1.52</td>
<td>1.66</td>
<td>0.87</td>
<td>0.40</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>2.80</td>
<td>2.54</td>
<td>1.91</td>
<td>2.11</td>
<td>1.13</td>
<td>1.56</td>
<td>1.67</td>
<td>0.98</td>
<td>0.91</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>2.01</td>
<td>1.98</td>
<td>1.28</td>
<td>1.47</td>
<td>0.75</td>
<td>1.09</td>
<td>1.26</td>
<td>0.89</td>
<td>0.62</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>2.65</td>
<td>2.56</td>
<td>2.49</td>
<td>2.57</td>
<td>1.76</td>
<td>1.92</td>
<td>0.89</td>
<td>0.64</td>
<td>0.02</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>2.71</td>
<td>2.65</td>
<td>2.78</td>
<td>2.56</td>
<td>1.79</td>
<td>2.01</td>
<td>0.92</td>
<td>0.65</td>
<td>0.12</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>2.33</td>
<td>2.49</td>
<td>2.26</td>
<td>3.28</td>
<td>1.55</td>
<td>2.04</td>
<td>0.78</td>
<td>0.45</td>
<td>0.02</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>2.50</td>
<td>2.74</td>
<td>2.26</td>
<td>3.47</td>
<td>1.50</td>
<td>2.19</td>
<td>1.00</td>
<td>0.55</td>
<td>0.01</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>2.80</td>
<td>2.88</td>
<td>2.56</td>
<td>3.11</td>
<td>1.65</td>
<td>2.29</td>
<td>1.15</td>
<td>0.59</td>
<td>0.16</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>2.01</td>
<td>2.17</td>
<td>1.89</td>
<td>2.32</td>
<td>1.15</td>
<td>1.56</td>
<td>0.86</td>
<td>0.60</td>
<td>0.06</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>2.65</td>
<td>2.60</td>
<td>2.28</td>
<td>2.49</td>
<td>1.64</td>
<td>1.87</td>
<td>1.00</td>
<td>0.74</td>
<td>0.07</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>2.71</td>
<td>3.22</td>
<td>2.52</td>
<td>2.86</td>
<td>1.65</td>
<td>2.26</td>
<td>1.07</td>
<td>0.96</td>
<td>0.27</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>2.33</td>
<td>2.53</td>
<td>2.07</td>
<td>2.63</td>
<td>1.44</td>
<td>1.92</td>
<td>0.90</td>
<td>0.61</td>
<td>0.04</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>2.51</td>
<td>2.77</td>
<td>1.93</td>
<td>2.71</td>
<td>1.36</td>
<td>2.00</td>
<td>1.14</td>
<td>0.76</td>
<td>0.02</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>2.80</td>
<td>2.97</td>
<td>2.30</td>
<td>2.96</td>
<td>1.57</td>
<td>2.24</td>
<td>1.23</td>
<td>0.74</td>
<td>0.29</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>2.01</td>
<td>2.33</td>
<td>1.63</td>
<td>2.13</td>
<td>1.04</td>
<td>1.57</td>
<td>0.97</td>
<td>0.76</td>
<td>0.11</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>2.65</td>
<td>2.67</td>
<td>2.42</td>
<td>2.66</td>
<td>1.76</td>
<td>2.01</td>
<td>0.89</td>
<td>0.66</td>
<td>0.05</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>2.71</td>
<td>3.32</td>
<td>2.68</td>
<td>3.23</td>
<td>1.75</td>
<td>2.53</td>
<td>0.96</td>
<td>0.79</td>
<td>0.20</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>2.33</td>
<td>2.60</td>
<td>2.17</td>
<td>2.88</td>
<td>1.55</td>
<td>2.10</td>
<td>0.78</td>
<td>0.50</td>
<td>0.03</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>2.51</td>
<td>2.88</td>
<td>2.09</td>
<td>2.95</td>
<td>1.50</td>
<td>2.20</td>
<td>1.01</td>
<td>0.68</td>
<td>0.01</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>2.80</td>
<td>3.08</td>
<td>2.61</td>
<td>3.19</td>
<td>1.66</td>
<td>2.40</td>
<td>1.14</td>
<td>0.68</td>
<td>0.20</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>2.01</td>
<td>2.37</td>
<td>1.84</td>
<td>2.29</td>
<td>1.14</td>
<td>1.70</td>
<td>0.87</td>
<td>0.67</td>
<td>0.08</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
data. It also appears that since applied water is generally lower in IDC (see Table 2), it is likely that the infiltration of precipitation in IDC is estimated higher compared with those in DPLA. By increasing the curve numbers in IDC, the infiltration of precipitation can be decreased which will lead to increased applied water with increased ETaw and decreased ETp. Overall, however, the values from IDC and DPLA are reasonably close given the fact that there was no effort to calibrate IDC to match values from DPLA.

Similarly, Table 3 shows the comparison of IDC and DPLA values for rice. As for Table 2, IDC results were obtained by setting the K\textsubscript{sat} values for grid cells that include rice fields to 0.01 micrometers/sec. It can be seen that ET values are generally lower in IDC than DPLA, with the exception of 1998. For 1998, ET values are closer to each other. It appears that due to different ET rates, applied water and ETaw are also lower in IDC for years 1999 through 2001. Since ET rates are similar for 1998, these values are also close to each other for 1998. Overall, the results match relatively well compared to the results for non-ponded crops.
Table 3. Comparison of IDC results for rice to the values obtained from DPLA with Ksat values at cells with rice set to 0.01 micrometers/sec (all values are in ac-ft/ac; n/a = not applicable)

<table>
<thead>
<tr>
<th>Water Year</th>
<th>DAU</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
<th>IDC</th>
<th>DPLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>142</td>
<td>3.32</td>
<td>2.50</td>
<td>5.27</td>
<td>4.36</td>
<td>2.93</td>
<td>2.48</td>
<td>0.37</td>
<td>0.02</td>
<td>0.55</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>163</td>
<td>2.78</td>
<td>2.50</td>
<td>4.49</td>
<td>4.22</td>
<td>2.47</td>
<td>2.40</td>
<td>0.29</td>
<td>0.10</td>
<td>0.51</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>2.94</td>
<td>2.55</td>
<td>4.75</td>
<td>4.29</td>
<td>2.61</td>
<td>2.44</td>
<td>0.30</td>
<td>0.12</td>
<td>0.50</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>166</td>
<td>3.49</td>
<td>2.53</td>
<td>5.87</td>
<td>4.25</td>
<td>3.16</td>
<td>2.42</td>
<td>0.30</td>
<td>0.12</td>
<td>0.66</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>3.49</td>
<td>2.50</td>
<td>5.85</td>
<td>4.21</td>
<td>3.16</td>
<td>2.40</td>
<td>0.30</td>
<td>0.10</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>142</td>
<td>3.32</td>
<td>3.30</td>
<td>5.40</td>
<td>7.73</td>
<td>3.02</td>
<td>3.19</td>
<td>0.27</td>
<td>0.12</td>
<td>0.53</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>163</td>
<td>2.78</td>
<td>3.30</td>
<td>4.59</td>
<td>6.18</td>
<td>2.54</td>
<td>3.10</td>
<td>0.22</td>
<td>0.20</td>
<td>0.47</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>2.94</td>
<td>3.26</td>
<td>4.85</td>
<td>5.98</td>
<td>2.68</td>
<td>3.06</td>
<td>0.23</td>
<td>0.20</td>
<td>0.49</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>166</td>
<td>3.49</td>
<td>3.30</td>
<td>5.97</td>
<td>7.76</td>
<td>3.23</td>
<td>3.09</td>
<td>0.23</td>
<td>0.21</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>3.49</td>
<td>3.30</td>
<td>5.94</td>
<td>6.18</td>
<td>3.22</td>
<td>3.10</td>
<td>0.23</td>
<td>0.20</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>142</td>
<td>3.32</td>
<td>3.23</td>
<td>5.38</td>
<td>5.34</td>
<td>2.99</td>
<td>3.05</td>
<td>0.30</td>
<td>0.19</td>
<td>0.53</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>163</td>
<td>2.78</td>
<td>3.39</td>
<td>4.58</td>
<td>5.78</td>
<td>2.53</td>
<td>3.29</td>
<td>0.23</td>
<td>0.10</td>
<td>0.47</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>2.94</td>
<td>3.31</td>
<td>4.85</td>
<td>5.62</td>
<td>2.67</td>
<td>3.19</td>
<td>0.24</td>
<td>0.13</td>
<td>0.49</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>166</td>
<td>3.49</td>
<td>3.37</td>
<td>5.96</td>
<td>5.73</td>
<td>3.21</td>
<td>3.26</td>
<td>0.25</td>
<td>0.11</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>3.48</td>
<td>3.40</td>
<td>5.95</td>
<td>5.79</td>
<td>3.21</td>
<td>3.30</td>
<td>0.24</td>
<td>0.10</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>142</td>
<td>3.32</td>
<td>3.45</td>
<td>5.43</td>
<td>5.71</td>
<td>3.03</td>
<td>3.25</td>
<td>0.26</td>
<td>0.20</td>
<td>0.53</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>163</td>
<td>2.78</td>
<td>3.60</td>
<td>4.62</td>
<td>5.96</td>
<td>2.56</td>
<td>3.40</td>
<td>0.20</td>
<td>0.20</td>
<td>0.47</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>2.94</td>
<td>3.54</td>
<td>4.89</td>
<td>5.90</td>
<td>2.70</td>
<td>3.34</td>
<td>0.21</td>
<td>0.20</td>
<td>0.49</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>166</td>
<td>3.49</td>
<td>3.59</td>
<td>5.97</td>
<td>5.96</td>
<td>3.22</td>
<td>3.39</td>
<td>0.24</td>
<td>0.20</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>3.49</td>
<td>3.60</td>
<td>5.99</td>
<td>5.96</td>
<td>3.24</td>
<td>3.40</td>
<td>0.21</td>
<td>0.20</td>
<td>0.65</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 Running IDC

IDC can be executed as a stand-alone model or it can be linked to other simulation models that operate on finite-element or finite-difference type computational grids. Both the source code and the compiled executables are available for download from the IWFM web site at http://baydeltaoffice.water.ca.gov/modeling/hydrology/IWFM/index.cfm. IDC, either executed as a stand-alone model or linked to other simulation models, requires a main control input file that lists the names of data files used for the simulation, the simulation period and length of time step, as well as the output options. Depending on the specifications listed in the input data files, one or more output files are generated. These files store simulated water budget information at each subregion and they are in native Fortran binary format. Another program, Budget.exe, is required to process these files and generate water budget tables in ASCII text format. Budget.exe is also available for download from IWFM web site. Next, the IDC’s time-tracking feature as well as input files that are used and output files that are generated by IDC are discussed.

7.1 Simulation Time Tracking

To better represent the temporal distribution of input and output data, IDC keeps track of the actual date and time of each time step in a simulation period. Each data entry in input time series data files is required to have a date and time stamp which allows IDC to retrieve time series data correctly. This, in return, allows the user to maintain a single set of time series input data files for applications where the starting and ending date and time of the simulation may change. For example, during the calibration stage of a project, the simulation is run for two periods: calibration period and the verification period. In a time tracking
simulation, time series input data files can be prepared so that the data covers both the calibration and verification periods. Then the same time series data files can be used for both calibration and verification runs without the need for modification. Since a time tracking simulation keeps track of actual date and time of each of the simulation time steps, IDC can retrieve the correct data from the time series data files.

Time tracking simulations allow usage of HEC-DSS files as well as ASCII text files for time series data input and output. HEC-DSS is a database format designed by Hydrologic Engineering Center (HEC) of U.S. Army Corps of Engineers specifically for time-series data encountered in hydrologic applications. These files allow efficient storage and retrieval of hydrologic time series data, and HEC offers free utilities (HEC-DSSVue and DSS Excel add-in) for manipulation, visualization and analysis of data stored in DSS files. These utilities and instructions on how to use DSS files can be downloaded from HEC web site at www.hec.usace.army.mil.

Another advantage of time tracking simulations is that results that are printed to output files have date and time stamps associated with them. This allows easy comparison of simulation results to observed values which generally come with the date and time of observation.

7.1.1 Length of Simulation Time Step

In order to be consistent with the standards of HEC-DSS database files, IDC restricts the length of simulation time step that can be used in an application. The allowable time step lengths are listed in Table 4.
7.1.2 Time Step Format

In IDC, start and end date and time of simulation period as well as the date and time of each data entry in time series data input files are required to be specified by using a time stamp. The format of the time stamp is as follows:

MM/DD/YYYY_hh:mm

Table 4. List of allowable time step lengths in IDC simulations

<table>
<thead>
<tr>
<th>Time Step Length</th>
<th>IDC Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>1MIN</td>
</tr>
<tr>
<td>2 minutes</td>
<td>2MIN</td>
</tr>
<tr>
<td>3 minutes</td>
<td>3MIN</td>
</tr>
<tr>
<td>4 minutes</td>
<td>4MIN</td>
</tr>
<tr>
<td>5 minutes</td>
<td>5MIN</td>
</tr>
<tr>
<td>10 minutes</td>
<td>10MIN</td>
</tr>
<tr>
<td>15 minutes</td>
<td>15MIN</td>
</tr>
<tr>
<td>20 minutes</td>
<td>20MIN</td>
</tr>
<tr>
<td>30 minutes</td>
<td>30MIN</td>
</tr>
<tr>
<td>1 hour</td>
<td>1HOUR</td>
</tr>
<tr>
<td>2 hours</td>
<td>2HOUR</td>
</tr>
<tr>
<td>3 hours</td>
<td>3HOUR</td>
</tr>
<tr>
<td>4 hours</td>
<td>4HOUR</td>
</tr>
<tr>
<td>6 hours</td>
<td>6HOUR</td>
</tr>
<tr>
<td>8 hours</td>
<td>8HOUR</td>
</tr>
<tr>
<td>12 hours</td>
<td>12HOUR</td>
</tr>
<tr>
<td>1 day</td>
<td>1DAYS</td>
</tr>
<tr>
<td>1 week</td>
<td>1WEEK</td>
</tr>
<tr>
<td>1 month</td>
<td>1MON</td>
</tr>
<tr>
<td>1 year</td>
<td>1YEAR</td>
</tr>
</tbody>
</table>
where

\[\begin{align*}
\text{MM} &= \text{two digit month index;} \\
\text{DD} &= \text{two digit day index;} \\
\text{YYYY} &= \text{four digit year;} \\
\text{hh} &= \text{two digit hour in terms of military time (e.g. 1:00pm is represented as 13:00);} \\
\text{mm} &= \text{two digit minute.}
\end{align*}\]

The time is represented in military time and midnight is referred to as 24:00. For instance, 05/28/1973_24:00 represents the midnight on the night of May 28, 1973. Another example is the starting date and time of a simulation period: if the initial conditions for a daily simulation is given for the end of September 30, 1975, then the time stamp for the starting date and time of the simulation will be 09/30/1975_24:00. The first simulation result will be printed for October 1, 1975 at midnight with the time stamp 10/01/1975_24:00.

7.1.3 Preparation of Time Series Data Input Files

The user is allowed to use a mixture of ASCII text and DSS files for time series input data. In preparing these files, the rules listed below should be followed:

1. The data should have a regular interval. Gaps in the data are not allowed. For instance, if the data is monthly a value for every month should be entered.

2. The time stamp of the data represents the end of the interval for which the data is valid. For instance, in monthly time series evapotranspiration data, a data point time stamped with 08/31/1995_24:00 represents the evapotranspiration that occurred in August of 1995. As another example, if the starting date and time of the simulation period is 12/31/1970_24:00 (i.e. initial conditions are given at the midnight of
December 31, 1970) in a daily simulation, then IDC will search for the time series data time-stamped as 01/01/1971_24:00 (data for January 1st in 1971) in the time series input files.

3. The smallest interval that can be used for time series data is 1 minute.

4. A time series input data can be constant throughout the simulation period. If an ASCII text file is used for data input, the time stamp for the constant value can be set to a date and time that is greater than the ending date and time of the simulation period. For instance, if the simulation period ends at 06/15/2003_18:00 (6:00pm on June 15, 2003), then the constant value can have a time stamp 12/31/2100_24:00 (midnight on the night of December 31, 2100). IDC reads the constant value for the midnight of December 31, 2100 and uses this value for all simulation times before this date and time. Generally, time series input files include conversion factors to convert only the “spatial” component of the input data unit. The temporal unit is deduced from the time interval of the input data. In the case of constant time series data, IDC is not able to obtain the time interval and, hence, the temporal unit. If a constant value for time series data is used, the user should make sure that appropriate conversion factors are supplied so that the temporal and spatial units of the input data are consistent with those used internally during the simulation. Time series data that is constant can also be represented in DSS files but this is not suggested.

5. For rate-type time series data (e.g. evapotranspiration data), the time unit is assumed to be the interval of data. For instance, if the evapotranspiration data is entered monthly, IDC assumes that the time unit of the evapotranspiration rates is 1 month. When time series data is a constant value for the entire simulation period IDC has no
way to figure out the time unit of the input data. In this case the user should make sure that the time unit of data is the same as the consistent time unit of simulation.

6. For recycled time series data (e.g. fraction of total urban water that is used indoors given for each month but do not change from one year to the other), the year of the time stamp can be set to 4000. Year 4000 is a special flag for IDC such that it replaces year 4000 with the simulation year to retrieve the appropriate data from the input file. As an example consider the time series data in Table 5 for the fraction of total urban water that is used indoors. This data set represents that for the initial third of each simulation year the urban water indoors usage fraction is 0.7, for the second third it is 0.5 and for the last third it is 0.35. Recycled time series data can be used in both ASCII text and DSS files. If a monthly time series data is to be recycled the user should enter the time stamp for the last day of February as 02/29/4000_24:00 to address both the leap and non-leap years.

7. The interval of time series data is required to be synchronized with the simulation time step. Table 6 shows examples of accepted and unaccepted situations. It should be noted that IDC will continue to read data from the input files even if the data interval is not properly synchronized with the simulation time step. However, in such cases there is no guarantee that the correct data will be retrieved from the input file.

<table>
<thead>
<tr>
<th>Time Stamp</th>
<th>Fraction of Urban Indoors Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/30/4000_24:00</td>
<td>0.70</td>
</tr>
<tr>
<td>08/31/4000_24:00</td>
<td>0.50</td>
</tr>
<tr>
<td>12/31/4000_24:00</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Table 6. Examples of acceptable and unacceptable cases for the synchronization of time series data interval and the simulation time step

<table>
<thead>
<tr>
<th>Situation</th>
<th>Graphical Representation</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly time series data, monthly simulation</td>
<td>TS data \overrightarrow{t} Simulation \overrightarrow{t}</td>
<td>Yes</td>
</tr>
<tr>
<td>Monthly time series data, daily simulation</td>
<td>TS data \overrightarrow{t} Simulation \overrightarrow{t}</td>
<td>Yes</td>
</tr>
<tr>
<td>Monthly time series data, monthly simulation (TS data times don't match simulation times)</td>
<td>TS data \overrightarrow{t} Simulation \overrightarrow{t}</td>
<td>No</td>
</tr>
<tr>
<td>Monthly time series data, weekly simulation</td>
<td>TS data \overrightarrow{t} Simulation \overrightarrow{t}</td>
<td>No</td>
</tr>
<tr>
<td>Monthly time series data, yearly simulation</td>
<td>TS data \overrightarrow{t} Simulation \overrightarrow{t}</td>
<td>No</td>
</tr>
</tbody>
</table>
Therefore, it is up to the user to ensure correct synchronization between the input data and the simulation time step.

7.2 Input and Output Data File Types

IDC can access multiple file formats: (i) ASCII text, (ii) Fortran binary, and (iii) HEC-DSS files. The user can use several file formats in a single application. For instance, some of the input time series data can be read from HEC-DSS files whereas the rest can be read from ASCII text files. Some of the time series simulation results can be printed out to ASCII text files and the others can be printed out to HEC-DSS files.

Although IDC allows usage of several file formats in a single application, some of the input and output files are required to be in specific formats. For instance, all budget output files generated by IDC and read in by Budget post-processors are required to be in Fortran binary format. Another example is the main control input file for all IDC: this file is required to be in ASCII text file format.

IDC recognizes the file formats from the 3-letter file name extensions. Table 7 lists the extensions that are recognized by IDC for each of the file formats.

<table>
<thead>
<tr>
<th>File Type</th>
<th>Recognized File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>.DAT</td>
</tr>
<tr>
<td></td>
<td>.TXT</td>
</tr>
<tr>
<td></td>
<td>.OUT</td>
</tr>
<tr>
<td></td>
<td>.IN</td>
</tr>
<tr>
<td></td>
<td>.IN1</td>
</tr>
<tr>
<td></td>
<td>.IN2</td>
</tr>
<tr>
<td></td>
<td>.BUD</td>
</tr>
<tr>
<td>Fortran binary</td>
<td>.BIN</td>
</tr>
<tr>
<td>HEC-DSS</td>
<td>.DSS</td>
</tr>
</tbody>
</table>
7.3 Input Files

Input files in IDC include comment lines as well as the input data itself. A line with one of “C”, “c” or “*” at the first column is identified as a comment line. The inclusion of comment lines allows IDC files to be self-documenting; the purpose of each file along with the description of each input data are already included in IDC input file templates, and the user can include explanations for the data development directly in the input files using the comment lines.

A schematic representation of IDC input file structure is given in Figure 17. A Main Input File serves as the starting point for an IDC simulation. The IDC Main Input File lists the names of the data files that include grid nodal x-y coordinates, element configuration data, precipitation and evaporation data, list of elements that are covered by lakes or reservoirs where root zone flow processes are not simulated, and the root zone parameters. The IDC Main Input File also lists the beginning and ending date and time of the simulation as well as the simulation time step length. Factors to convert IDC simulation units into desired units of output are also listed in this file.

Root Zone Parameter File that is listed in the IDC Main Input File acts as a gateway to all the parameters and data files required for the simulation of the root zone flow processes and water demand computations. This file includes names of gateway data files required for the simulation of non-ponded crops, ponded crops, urban lands, and lands with native and riparian vegetations. It also includes file names for simulation output, soil parameters at each cell and the destination for the surface runoff generated at each cell. Gateway files for non-ponded crops, ponded-crops, urban lands and lands with native and riparian vegetation act as containers for additional data file names and parameters that are
Figure 17. Schematic representation of the IDC input file structure
necessary to simulate the flow processes and water demands (if applicable) for these land-use types. These gateway files provide a structure for the user to group related data files as well as turn on or off the simulation of particular land use types in an application. For instance, by leaving blank the name of the gateway file for non-ponded crops in the Root Zone Parameter File, the user can easily omit the simulation of flow processes for non-ponded crops. This feature allows easy implementation of scenario studies where a particular land-use type is assumed to be non-existent with respect to a base-case scenario.

Each land-use type (non-ponded crops, ponded-crops, urban or native and riparian vegetation) include a data file that lists the area of each land-use type at a grid cell. These areas can be entered either as absolute areas or as fractions of the total cell area. In either case, IDC normalizes all areas (given as absolute areas or fractions) specified for a grid cell and converts all specified values into fractions of the cell area. However, whichever option is used to specify the land-use areas at a grid cell, it has to be consistent for all land-use types. For example, if the areas of non-ponded crops at a cell are specified as fractions, then areas for the ponded crops, urban lands and lands with native and riparian vegetation should also be specified as fractions. Otherwise, the total cell area will be incorrectly divided into the land-use types.

The following sections describe in detail the variables to be populated in each of the input file and display sample files.

7.3.1 IDC Main Input File

The IDC Main Input File serves as the starting point for an IDC simulation. The names of the data files for the IDC simulation are listed in this file as well as the beginning
and ending date and time of the simulation, and the simulation time step length. Factors to convert IDC simulation units into desired units of output are also listed.

The following is a list of the variables used in this data file:

BDT
Beginning simulation date and time; use MM/DD/YYYY_hh:mm format

EDT
Ending simulation date and time; use MM/DD/YYYY_hh:mm format

UNITT
Time step length and unit; choose one of the options listed in the IDC Main Input File which are time steps that are recognized by HEC-DSS database system

CACHE
This is the minimum number of simulation results for each time series output data that is stored in the computer memory before saved onto the hard disk; a large value (e.g. 50000 or more) that is permissible by the memory resources may have a substantial effect on decreasing the simulation run-times

KDEB
Switch for simulation progress monitoring (1 = print detailed messages on the screen; 0 = print only simulation timesteps on the screen; −1 = do not print any messages on the screen)

FACTAROU
Factor to convert simulation unit of area into intended output unit of area

UNITAROU
Output unit of area (maximum 8 characters long)

FACTVLOU
Factor to convert simulation unit of volume into intended output unit of volume

UNITVLOU
Output unit of volume (maximum 8 characters long)
MAIN INPUT FILE

Project: IDC Version ## Release
(california Department of Water Resources)
Filename: IDC_MAIN.in

This file contains the control data for IDC that includes the names and
descriptions of all simulation files, simulation period and output conversion
factors.

FILE NAME DESCRIPTION

GridElement.dat / 1: ELEMENT CONFIGURATION FILE (INPUT, REQUIRED)
GridNodes.dat / 2: NODE X-Y COORDINATE FILE (INPUT, REQUIRED)
RootZone\ROOTZONE MAIN.dat / 3: LAKE ELEMENTS DATA FILE (INPUT, OPTIONAL)
Precip RT.txt.dat / 4: ROOT ZONE PARAMETER DATA FILE (INPUT, REQUIRED)
Precip RT.txt.dat / 5: PRECIPITATION DATA FILE (INPUT, REQUIRED)
Precip RT.txt.dat / 6: EVAPOTRANSPIRATION DATA FILE (INPUT, REQUIRED)

The following lists the simulation beginning time, ending time and time step length.

SET : Beginning simulation date and time. Use MM/DD/YYYY hh:mm format.
* Midnight is 24:00
EST : Ending simulation date and time. Use MM/DD/YYYY hh:mm format.
* Midnight is 24:00
UNITT : Time step length and unit. Choose one of the following:
1MIN
2MIN
3MIN
4MIN
5MIN
10MIN
15MIN
2MIN
20MIN
30MIN
1HOUR
2HOUR
3HOUR
4HOUR
6HOUR
12HOUR
1DAY
1WEEK
1MONTH
1YEAR

VALUE DESCRIPTION

09/30/1997 24:00 / SET
09/30/2001 24:00 / END
1MIN / UNITT

Output Control Options

CACHE : Cache size in terms of number of values stored for time series data output
h/ME : Enter 1 - to print messages on the screen to monitor execution
Enter -1 - to suppress printing of time steps on the screen
FACTAROU: Factor to convert simulation unit of area into intended output unit of area
UNITAROU: Output unit of area (max. 8 characters long)
FACTVOLOU: Factor to convert simulation unit of volume into intended output unit of volume
UNITVOLOU: Output unit of volume (max. 8 characters long)

VALUE DESCRIPTION

500000 / CACHE
0 / h/ME
2.295648e-5 / FACTAROU (sq. ft. -> ac)
ac / UNITAROU
2.295648e-5 / FACTVOLOU (cu. ft. -> ac. ft.)
ac. ft. / UNITVOLOU
7.3.2 Element Configuration File

The Element Configuration File details the element configuration for each element represented in the finite element mesh, number of subregions that the model domain is divided into, the name of the subregions and the subregion number that each element belongs to. This is the same Element Configuration File used in the Pre-processor component of IWFM. A detailed explanation of this file can be found in *IWFM v4.0 User’s Manual*.

7.3.3 Nodal X-Y Coordinate File

The nodal coordinate file contains node numbers and corresponding x and y coordinates. This is the same Nodal X-Y Coordinate File used in the Pre-processor component of IWFM. A detailed explanation of this file can be found in *IWFM v4.0 User’s Manual*.

7.3.4 Lake Elements Data File

The Lake Elements Data File lists the grid cells that are lake elements and will be excluded from land surface and root zone flow computations. It should be noted that lakes in IDC are different then the ponded areas for rice and refuges. Rice and refuge ponding operations are explicitly simulated in IDC and the grid cells with such ponds should not be listed in the Lake Elements Data File.

The following variables are used in this data file:

NTELAKE Total number of lake elements
IELAKE List of lake elements
FILE DESCRIPTION:
This data file lists the lake elements that will be excluded from root zone flow routing.

Lake Elements Data

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NTILAKE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IELAKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>103</td>
</tr>
</tbody>
</table>
7.3.5 Precipitation File

The Precipitation File contains the time series rainfall values for each of the rainfall stations used in the simulation. Each element is associated with a rainfall station in the Root Zone Component Main File as described later in this document. This is the same Precipitation File used in the Simulation component of IWFM. A detailed explanation of this file can be found in *IWFM v4.0 User’s Manual*.

7.3.6 Evapotranspiration File

The Evapotranspiration File contains time series ET data for all crop types and non-agricultural land use types. The ET rates listed in this file are associated with individual land-use types in each element using the related Root Zone Component files as described later in this document. This is the same Evapotranspiration File used in the Simulation component of IWFM. A detailed explanation of this file can be found in *IWFM v4.0 User’s Manual*.

7.3.7 Root Zone Component Files

The root zone component is the main simulation part of IDC. Root Zone Component Main File is the gateway to additional data files that are used in simulating land surface and root zone flow processes at agricultural, urban, native vegetation and riparian vegetation lands. Agricultural and urban water demands are also computed in the root zone component. Root zone component files are described in detail in the following sections.
7.3.7.1 Root Zone Component Main File

The Root Zone Component Main File includes the convergence criteria for the iterative solution of the non-linear soil moisture mass balance equation, names of additional input files that are used to simulate land surface and root zone flow processes for agricultural, urban and natural lands, and agricultural and urban water demands. Subregional Land and Water Use as well as Subregional Root Zone Moisture Budget output filenames are also listed in this file. Soil properties at each grid cell and the destination for the surface flow generated at each cell are listed in the last section of the Root Zone Component Main File.

The following sections and variables are defined in this file:

Root Zone Simulation Scheme Control and Filenames

In this section convergence criteria for the iterative solution methodology and names of additional input and output files are listed.

RZCONV Convergence criteria for iterative soil moisture accounting as a fraction of total porosity; [L/L]

RZITERMX Maximum number of iterations for iterative soil moisture accounting

FACTCN Conversion factor to convert inches to the simulation unit of length

AGNPFL Filename for the Non-Ponded Crops Main File (maximum 1000 characters); leave blank if non-ponded crops are not simulated

PFL Filename for the Ponded Crops Main File (maximum 1000 characters); leave blank if rice and/or refuge lands are not simulated

URBFL Filename for the Urban Lands Main File (maximum 1000 characters); leave blank if urban lands are not simulated
<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVRVFL</td>
<td>Filename for the Natural Lands Main File (maximum 1000 characters); leave blank if native and/or riparian vegetation lands are not simulated</td>
</tr>
<tr>
<td>RFFL</td>
<td>File that lists the return flow fractions (maximum 1000 characters); this is a required file even if agricultural and urban lands are not simulated</td>
</tr>
<tr>
<td>RUFL</td>
<td>File that lists the irrigation water re-use factors (maximum 1000 characters); this is a required file even if agricultural and urban lands are not simulated</td>
</tr>
<tr>
<td>MSRCFL</td>
<td>File that lists generic source of moisture rates other than precipitation and irrigation (maximum 1000 characters); leave blank if there are no generic sources of moisture simulated</td>
</tr>
<tr>
<td>AGWDFL</td>
<td>File that lists agricultural water supply requirement (maximum 1000 characters); leave blank if agricultural water supply requirement for all crops will be computed dynamically</td>
</tr>
<tr>
<td>LWUBUDFL</td>
<td>Binary output file for subregional land and water use budget (maximum 1000 characters); leave blank if this output is not required</td>
</tr>
<tr>
<td>RZBUDFL</td>
<td>Binary output file for subregional root zone moisture (maximum 1000 characters); leave blank if this output is not required</td>
</tr>
<tr>
<td>FNSMFL</td>
<td>Output file for end-of-simulation soil moisture (maximum 1000 characters); leave blank if this output is not required</td>
</tr>
</tbody>
</table>
Soil Parameters and Surface Flow Destinations

In this section soil parameters, precipitation rates, generic soil moisture sources (if any) and surface runoff destinations are listed for each finite element.

FACTK Conversion factor for the spatial component of the root zone hydraulic conductivity

TUNITK Time unit of root zone hydraulic conductivity this should be one of the units recognized by HEC-DSS that are listed in the IDC Main Input File

IE Element identification number

WP Wilting point; [L/L]

FC Field capacity; [L/L]

TN Total porosity; [L/L]

LAMBDA Pore size distribution index

K Saturated hydraulic conductivity; [L/T]

RHC Method to represent hydraulic conductivity versus moisture content curve (1 = Campbell's equation, 2 = van Genucen-Mualem equation)

IRNE Precipitation rate; this number corresponds to the appropriate data column in the Precipitation File

FRNE Factor to convert rainfall at the precipitation data column IRNE to rainfall at element IE

IMSRC Generic source of moisture; this number corresponds to the appropriate data column in the Generic Moisture Source File that
applies to element IE (enter any number if the Generic Moisture Source File, MSRCFL, is not defined)

TYPDEST
Destination type for the surface flow from element IE (0 = surface flow goes outside of model area, 1 = surface flow goes to a stream node, 2 = surface flow goes to another element, 3 = surface flow goes to a lake, 4 = surface flow goes to a subregion, 5 = surface flow recharges the groundwater)

DEST
Destination identification number for the surface flow from element IE; enter any number if surface flow from the element goes outside the model area (TYPDEST = 0) or recharges the groundwater (TYPDEST = 5)
INTEGRATED WATER FLOW MODEL (IWFM)

*** Version ***

PROJECT: IPCC Version ** Release
California Department of Water Resources
Filename: ROUTZONE_MAIN.dat

File Description
This data file contains the parameters and data file names for the simulation
of root zone processes.

Root Zone Simulation Scheme Control and File Names

- SD2CONV: Convergence criteria for iterative soil moisture accounting as a
 fraction of total porosity [L/L]
- SITTERM: Maximum number of iterations for iterative soil moisture accounting
- FACTM: Conversion factor to convert inches to the simulation unit of length
- MNMTL: Non-potted agricultural crop data file [max. 1000 characters]
 - * Leave blank if non-potted crops are not simulated
- FFL: File/efuge data file [max. 1000 characters]
 - * Leave blank if rice and/or efgre lands are not simulated
- UREFL: Urban lands data file [max. 1000 characters]
 - * Leave blank if urban lands are not simulated
- NRFL: Native/riparian vegetation lands data file [max. 1000 characters]
 - * Leave blank if native and/or riparian veg. lands are not simulated
- RFL: File that lists the return flow fractions [max. 1000 characters]
- RFL: File that lists the irrigation water re-use factors [max. 1000 characters]
- MRFN: File that lists generic source of moisture rates other than precipitation
 and irrigation [max. 1000 characters]
 - * Leave blank if there are no generic sources of moisture simulated
- AMRFN: file that lists agricultural water supply requirement [max. 1000 characters]
 - * Leave blank if agricultural water supply requirement will be computed
 - Dynamically
- LNRFN: Binary output file for land and water use budget at each
 subregion [max. 1000 characters]
 - * Leave blank if this output is not required
- RNRFN: Binary output file for root zone moisture budget at each
 subregion [max. 1000 characters]
 - * Leave blank if this output is not required
- FRFN: Output file for end-of-simulation soil moisture [max. 1000 characters]
 - * Leave blank if this output is not required

Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>SD2CONV</td>
</tr>
<tr>
<td>200</td>
<td>SITTERM</td>
</tr>
<tr>
<td>0.00033</td>
<td>FACTM (in -> ft)</td>
</tr>
<tr>
<td>RootZone\NonPottedGr\NonPottedGr.dat</td>
<td>MNMTL</td>
</tr>
<tr>
<td>RootZone\PottedGr\PottedGr.dat</td>
<td>FFL</td>
</tr>
<tr>
<td>RootZone\Urban\Urban.dat</td>
<td>UREFL</td>
</tr>
<tr>
<td>RootZone\NRF\NRF.dat</td>
<td>NRFL</td>
</tr>
<tr>
<td>RootZone\Facs\Facs.dat</td>
<td>RFL</td>
</tr>
<tr>
<td>RootZone\Nosf\Nosf.dat</td>
<td>MRFN</td>
</tr>
<tr>
<td>RootZone\WtDr\WtDr.dat</td>
<td>AMRFN</td>
</tr>
<tr>
<td>Budget\LWUBin</td>
<td>LNRFN</td>
</tr>
<tr>
<td>Budget\RWUBin</td>
<td>RNRFN</td>
</tr>
<tr>
<td>Budget\FRFNBin</td>
<td>FRFN</td>
</tr>
</tbody>
</table>

Parameters for Soil, Precipitation and Runoff Drainage

Enter conversion factors.

FACTM: Conversion factor for root zone hydraulic conductivity
- DO NOT include the conversion factor for time component of the unit.
- * e.g. Unit of hydraulic conductivity listed in this file = FT/VMTH
- Consistent unit used in simulation = IN/DAY
- Enter FACTM (FT/VMTH -> IN/DAY) = 0.333338-02
- (conversion of VMTH -> DAY is performed automatically)
- TURM: Time unit of root zone hydraulic conductivity. This should be one of the
 units recognized by HEC-395 that are listed in the Main Control File.

Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.293464</td>
<td>FACTM (micrometers/sec -> ft/day)</td>
</tr>
<tr>
<td>8</td>
<td>TURM</td>
</tr>
</tbody>
</table>

Enter soil parameters, precipitation and surface flow destination data below for each
grid element.

ID: Element ID
WP: Wilting point [L/L]
FC: Field capacity [L/L]
TM: Total porosity [L/L]
DN: Foam size distribution index [dimensionless]
K: Saturated hydraulic conductivity [L/T]
GRV: Method Co represent hydraulic conductivity vs. moisture content curve
1 = Campbell's equation
2 = Van Genuchten-Mualem equation
FPNE : Precipitation data column in the precipitation file that applies to element IE
FWE : Factor to convert rainfall at the precipitation data column to rainfall at element IE
IMSRC : Generic source of moisture data column in the generic moisture source file (MSRCTL

* Note: Enter any number if MSRCTL above is left blank

TYPFST: Destination type for the surface flow from element IE

0 = Surface flow goes outside of model area
1 = " to a stream node
2 = " another element
3 = " a lake
4 = " a subregion
5 = " groundwaters

DEST : Destination for the surface flow from element IE

* Note: Enter any number if TYPFST is set to 0 or 5

<table>
<thead>
<tr>
<th>IE</th>
<th>WP</th>
<th>RC</th>
<th>TN</th>
<th>LMBDA</th>
<th>F</th>
<th>PB</th>
<th>BSE</th>
<th>FNE</th>
<th>IMSRC</th>
<th>TYPFST</th>
<th>DEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.1570</td>
<td>0.4530</td>
<td>0.3700</td>
<td>5.000E-02</td>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.1571</td>
<td>0.4640</td>
<td>0.2420</td>
<td>5.100E+01</td>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.1093</td>
<td>0.4630</td>
<td>0.2520</td>
<td>5.000E-02</td>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>220</td>
<td>0.0000</td>
<td>0.1210</td>
<td>0.4300</td>
<td>0.2230</td>
<td>5.000E-02</td>
<td>2</td>
<td>3</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>221</td>
<td>0.0000</td>
<td>0.1408</td>
<td>0.4530</td>
<td>0.3700</td>
<td>5.000E-02</td>
<td>2</td>
<td>3</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>222</td>
<td>0.0000</td>
<td>0.2322</td>
<td>0.5010</td>
<td>0.2340</td>
<td>1.100E+01</td>
<td>2</td>
<td>3</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>223</td>
<td>0.0000</td>
<td>0.1210</td>
<td>0.4300</td>
<td>0.2230</td>
<td>5.000E-02</td>
<td>2</td>
<td>3</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
7.3.7.2 **Return Flow Fractions Data File**

The Return Flow Fractions Data File lists return flows specified as time series fractions of applied water. Non-ponded crops, ponded crops and urban lands at each element are associated with data columns in this file through pointers specified in the Non-Ponded Crops Main File, Ponded Crops Main File and Urban Lands Main File, respectively.

The following variables are used in this file:

- **NCOLRT** Number of return flow fractions data columns
- **NSPRT** Number of time steps to update the return flow fractions; enter any number if time-tracking simulation
- **NFQRT** Repetition frequency of the return flow fractions data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Return Flow Fractions Data File

If the time series data is listed in the Return Flow Fractions Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

- **TIME** Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.
- **RTRNF** Return flows as a fraction of applied water
Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC Record number that coincides with the data column number for the time series data
PATH Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWFN)

*** Version ***

RETURN FLOW FRACTIONS DATA FILE
Root Zone Component
for IWFN Simulation

Project: IDC Version ### Release
California Department of Water Resources
Filename: ReturnFlowFrac.dat

This data file contains a set of return flows given as fractions of irrigation water. These values are correlated to individual crops through the Root Zone Parameters file.

Return Flow Fractions Data Specifications

NCOLRT ; Number of return flow fractions data columns
NRFRMT ; Number of time steps to update the return flow fractions
 * Enter any number if time-tracking option is on
NRRT ; Repetition frequency of the return flow fractions data
 * Enter 0 if full time series data is supplied
DSSFL ; The name of the DSS file for data input
 * Leave blank if DSS file is not used for data input

--

VALUE DESCRIPTION
2 / NCOLRT
1 / NRFRMT
0 / NRRT

--

Return Flow Fractions

READ FROM THIS FILE
List the return flow fractions data below, if it will not be read from a DSS file (i.e., DSSFL is left blank above).

TIME ; Time
RTRNF ; Return flows as a fraction of applied water; [dimensionless]

--

TIME RTRNF AG RTRNF UDF RTRNF[3] ... RTRNF[NCOLRT]
12/31/2590 24:00 0.2 0.2

--

Pathnames for Return Flow Fractions Data

READ FROM DSS FILE
List the pathnames for return flow fractions data below, if it will be read from a DSS file (i.e., DSSFL is specified above).

REC ; Time series record number
PATH ; Pathname for the time series record

--

REC PATH

--
7.3.7.3 Re-use Fractions Data File

The Re-use Fractions Data File lists re-used portion of the captured return flow from agricultural and urban lands. It is specified as time series fractions of applied water. The difference between the return flow and re-use is the net return flow from agricultural and urban lands. Non-ponded crops, ponded crops and urban lands at each element are associated with data columns in this file through pointers specified in the Non-Ponded Crops Main File, Ponded Crops Main File and Urban Lands Main File, respectively.

The following variables are used in this file:

- **NCOLRUF** Number of re-use fractions data columns
- **NSPRUF** Number of time steps to update the re-use fractions; enter any number if time-tracking simulation
- **NFQRUF** Repetition frequency of the re-use fractions data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Re-use Fractions Data File

If the time series data is listed in the Re-use Fractions Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.
TIME Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.

RUF Re-use as a fraction of applied water

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC Record number that coincides with the data column number for the time series data

PATH Pathname for the time series record that will be used for data retrieval
RE-USE FRACTIONS DATA FILE

Chapter: Reuse frac. component
for IMEM simulation

Project: IDC Version 2.2 Release
California Department of Water Resources
Filename: ReuseFrac.dat

This data file contains a set of re-use data given as fractions of irrigation water. These values are correlated to individual crops through the root zone parameter file.

Re-Use Fractions Data Specifications

MCOLRUF : Number of re-use fractions data columns
RSRUF : Number of time steps to update the re-use fractions
* Enter any number if time-tracking option is on
SRUGRF : Repetition frequency of the re-use fractions data
* Enter 0 if full time series data is supplied
DSSFL : The name of the DSS file for data input
* Leave blank if DSS file is not used for data input

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MCOLRUF</td>
</tr>
<tr>
<td>0</td>
<td>RSRUF</td>
</tr>
<tr>
<td></td>
<td>SRUGRF</td>
</tr>
<tr>
<td></td>
<td>DSSFL</td>
</tr>
</tbody>
</table>

Re-Use Fractions

List the re-use fractions data below, if it will not be read from a DSS file (i.e. DSSFL is left blank above).

TIME : Time
RUF : Re-use as a fraction of applied water: [dimensionless]

<table>
<thead>
<tr>
<th>PATHNAME</th>
<th>INPUT</th>
<th>TIME</th>
<th>RUF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12/31/2500 24:00</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Pathnames for Re-Use Fractions Data

List the pathnames for re-use fractions data below, if it will be read from a DSS file (i.e. DSSFL is specified above).

<table>
<thead>
<tr>
<th>SEC</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEC | PATH
7.3.7.4 *Generic Moisture Source File*

The Generic Moisture Source File lists time series moisture inflow into the root zone from sources other than irrigation and precipitation. Possible sources of moisture are fog and lateral seepage through levees in places such as California’s Sacramento-San Joaquin River Delta. The inflow rate is given in terms of unit rate per rooting depth of a land-use type. All land-use types can have access to generic sources of moisture. Each land-use type at each element is associated to a data column in this file through pointers in the respective main input file of a particular land-use.

The following variables are used in this file:

- **NCOLSRC** Number of generic moisture data columns
- **FACTSRC** Conversion factor for the spatial component of the generic moisture data
- **NSPSRC** Number of time steps to update the generic moisture data; enter any number if time-tracking simulation
- **NFQSRC** Repetition frequency of the generic moisture data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Generic Moisture Source File

If the time series data is listed in the Generic Moisture Source File, then the following variables need to be populated. Otherwise, these variables should be commented out using
“C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

TIME
Time. For time tracking simulations use MM/DD/YYYY hh:mm format, for non-time tracking simulations enter an integer number.

MSRC
Generic moisture inflow rate; [(L/L)/T]

Data Input from DSS File
If time series data is stored in a DSS file then the following variables should be populated:

REC
Record number that coincides with the data column number for the time series data

PATH
Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWFM)
*** Version ### ***

GENERIC MOISTURE SOURCE DATA FILE
Root Zone Component
for IWFM Simulation

Project: IDC Version ### Release
California Department of Water Resources
Filename: GenericMoist.dat

File Description:
This file contains a set of moisture time-series data to be used as generic
source of water for the root zone. This additional source of moisture can be
used to represent any source of water other than precipitation and irrigation.
The unit of the generic moisture is specified as (L/L/T), for instance
inches per foot per month. These values will be converted to unit rate of inflow
by the Root Zone Component by multiplying them with the rooting depth for each
land use. The generic moisture data are correlated to individual grid cells
through the Root Zone Parameter File.

Generic Moisture Source Data Specifications

NMOISRC : Number of generic moisture data columns (or pathnames if D3S files are used)
FACTSRC : Conversion factor for generic moisture data
It is used to convert only the spatial component of the unit;
DO NOT include the conversion factor for time component of the unit.
* e.g. Unit of generic moisture listed in this file = INCHES/FOOT/MONTH
Consistent Unit Used in Simulation = FOOT/FOOT/DAY
Enter FACTSRC (INCHES/FOOT/MONTH -> FOOT/FOOT/MONTH) = 8.33333E-02
(conversion of MONTH -> DAY is performed automatically)

NSRC : Number of time steps to update the generic moisture data
* Enter any number if time-tracking option is on

NQSRC : Repetition frequency of the generic moisture data
* Enter 0 if full time series data is supplied
* Enter any number if time-tracking option is on

DSSFL : The name of the DSS file for data input (maximum 50 characters):
* Leave blank if DSS file is not used for data input

VALUE DESCRIPTION
0 / NMOISRC
0.683333 / FACTSRC (in -> ft)
1 / NSRC
0 / NQSRC
/ DSSFL

Generic Moisture Data
(READ FROM THIS FILE)

List the generic moisture rates below in units of L/L/T, if it will
not be read from a DSS file (i.e. DSSFL is left blank above).

TIME ; Time
MERC ; Generic moisture rate: [L/L/T]

Pathnames for Generic Moisture Data
(READ FROM DSS FILE)

List the pathnames for the generic moisture data below, if it will be read
from a DSS file (i.e. DSSFL is specified above).

REC ; Time series record number
PATH ; Pathname for the time series record

1 /DELTA/NORTH LEVEE/SEEK/1DAY/SEEFILE/
7.3.7.5 **Agricultural Supply Requirement Data File**

IDC allows time-series agricultural water demands to be specified for some or all of the crops rather than dynamically computing them. This feature is useful in planning studies when the water demand is dictated by the contractual limits rather than crop evapotranspirative requirements. This feature can also be used when the historical diversions are known and the part or all of the diversions are used for artificial recharge of the groundwater. The non-ponded and ponded crops in each element can optionally be associated with a data column in this file through the pointers in the Non-Ponded Crops Main File and the Ponded Crops Main File, respectively.

The following variables are used in this file:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMAG</td>
<td>Number of agricultural supply requirement data columns</td>
</tr>
<tr>
<td>FACTDMAG</td>
<td>Conversion factor for the spatial component of the agricultural supply requirement data</td>
</tr>
<tr>
<td>NSPDMAG</td>
<td>Number of time steps to update the agricultural supply requirement data; enter any number if time-tracking simulation</td>
</tr>
<tr>
<td>NFQDMAG</td>
<td>Repetition frequency of the agricultural supply requirement data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number</td>
</tr>
<tr>
<td>DSSFL</td>
<td>The name of the DSS file for data input; leave blank if DSS file is not used for data input</td>
</tr>
</tbody>
</table>

Data Input from Agricultural Supply Requirement Data File

If the time series data is listed in the Agricultural Supply Requirement Data File, then
the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

ITDA
Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.

RDMAG
Agricultural water supply requirement; [L³/T]

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

I
Record number that coincides with the data column number for the time series data

PATH
Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWMN)

*** Version ***

AGRICULTURAL WATER SUPPLY REQUIREMENT DATA FILE

Root Zone Component

For IWMN Simulation

Project: BIC Version ++ Release

California Department of Water Resources

Filename: AgWaterDemand.dat

File Description

This data file contains a set of agricultural water supply requirement data. These data are correlated to individual crops through Non-Flooded and Flooded Crop Data Files.

Agricultural Water Supply Requirement Data Specifications

- **NUMAG**: Number of agricultural water supply requirement data columns
- **FACTNW**: Conversion factor for the agricultural supply requirement
 - It is used to convert only the spatial component of the unit.
 - Do NOT include the conversion factor for time component of the unit.
 - *e.g.* Unit of flow listed in this file = AC-FT/MONTH
 - Consistent unit used in simulation = CU-FT/DAY
 - Enter FACTNW for calculation:
 - (AC-FT/MONTH -> CU-FT/MONTH) = 2.29568E-05
 - (CU-FT/MONTH -> DAY) = performed automatically
- **NRMAG**: Number of the steps to update the agricultural supply requirement data
 - * Enter any number if time-tracking option is on
- **NFSMAG**: Repetition frequency of the agricultural supply requirement data
 - * Enter 0 if full time series data is supplied
 - * Enter any number if time-tracking option is on
- **DSFL**: The name of the DSS file for data input
 - * Leave blank if DSS file is not used for data input

VALUE DESCRIPTION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>/ NUMAG</td>
</tr>
<tr>
<td>0.0</td>
<td>/ FACTNW (ac.ft -> cu.ft)</td>
</tr>
<tr>
<td>1</td>
<td>/ NRMAG</td>
</tr>
<tr>
<td>0</td>
<td>/ NFSMAG</td>
</tr>
<tr>
<td></td>
<td>/ DSFL</td>
</tr>
</tbody>
</table>

Agricultural Water Supply Requirement Data (READ FROM THIS FILE)

List the agricultural water supply requirement data below, if it will not be read from a DSS file (i.e. DSFL is left blank above).

ITDA: Time

NUMAG: Agricultural water supply requirement: [L^3/T]

Pathnames for Agricultural Water Supply Requirement Data (READ FROM DSS FILE)

List the pathnames for the agricultural water supply requirement data below, if it will be read from a DSS file (i.e. DSFL is specified above).

PATH: Pathname for the time series record

IR PATH
7.3.7.6 Non-Ponded-Crops Component Files

7.3.7.6.1 Non-Ponded Crops Main File

The Non-Ponded Crops Main File is the gateway file for all data that is necessary to simulate non-ponded crops and generate non-ponded-crop related budget files.

The file is divided into several sections and uses the following variables:

General Data

Number of non-ponded crops simulated, crop codes and filename for the non-ponded crop acreage data are defined in this section:

- **NCROP** Number of agricultural crops excluding ponded crops (i.e. rice and refuge)
- **FLDMD** Flag for the root zone moisture to be used for the computation of agricultural water demand and the timing of irrigation (0 = use the soil moisture at the beginning of time step, 1 = use the soil moisture at the end of time step); setting FLDMD to 0 works well when the simulation time step is small (e.g. 1 day) while it should be set to 1 when the simulation time step is longer (e.g. 1 month)
- **CCODE** Crop codes; enter 2-character crop codes for each of the non-ponded crops modeled (following codes are reserved and should not be used: UR = Urban, RI = Rice, RF = Refuge, NV = Native vegetation, RV = Riparian vegetation)
- **LUFLNP** File that lists the crop areas (maximum 1000 characters)
Budget Output Files

To generate crop-specific land and water use and root zone budgets, the following variables must be specified:

NBCROP Number of non-ponded crops for water budget output; enter 0 if crop specific budget output is not required

BCCODE Crop codes (from above) for which water budget output is required

CLWUBUDFL Binary output file for crop-specific land and water use budget at each subregion for selected crops (maximum 1000 characters); leave blank if this output is not required

CRZBUDFL Binary output file for root zone moisture budget at each subregion for selected crops (maximum 1000 characters); leave blank if this output is not required

Rooting Depths

RZFRACFL File that lists fraction of maximum root depths to represent root growth (maximum 1000 characters)

FACT Conversion factor for maximum crop root zone depths

IC Crop identification number; enter 1 through NCROP, sequentially

ROOT Maximum crop root zone depth; [L]

ICROOT Root depth as a fraction of maximum root depth; this number corresponds to the appropriate data column in the Root Depth Fractions Data File
Curve Numbers for Rainfall Runoff Simulation

Curve numbers for each element and crop combination are entered in this section.

IE Element identification number entered sequentially; enter 0 if curve numbers defined for each crop are to be used for all elements

CN Curve number for each non-ponded agricultural crop

Crop Evapotranspiration

Crop evapotranspiration for each element and crop combination is listed here by specifying a column number in the Evapotranspiration File:

IE Element identification number entered sequentially; enter 0 if following values are to be used for all elements

ICET Crop ET; this number corresponds to the appropriate data column the Evapotranspiration File

Agricultural Water Supply Requirement

If, for any crop at an element, the agricultural water supply requirement is pre-specified instead of being computed dynamically, they are specified in this section:

IE Element identification number; enter 0 if following values are to be used for all elements

ICAW Agricultural water supply requirement; this number corresponds to the appropriate data column in the Agricultural Supply Requirement Data File (AGWDFL) listed in the Root Zone Component Main File (enter
0 if agricultural water supply requirement will be computed dynamically

Irrigation Periods

Time series irrigation period data is listed in this section for each crop and element combination:

- **IPFL**: File that lists the irrigation periods for each crop (maximum 1000 characters)
- **IE**: Element identification number; enter 0 if following values are to be used for all elements
- **ICIP**: Irrigation period; this number corresponds to the appropriate data column in the Irrigation Period Data File (IPFL)

Minimum Soil Moisture

The minimum soil moisture that is used to trigger an irrigation event for each crop and element combination is listed in this section:

- **MINSMFL**: File that lists the minimum soil moisture for each crop (maximum 1000 characters)
- **IE**: Element identification number; enter 0 if following values are to be used for all elements
- **ICMSM**: Minimum soil moisture as a fraction of field capacity; this corresponds to the appropriate data column in the Minimum Soil Moisture Data File (MINSMFL)
Target Soil Moisture for Irrigation

The moisture level which is targeted to be achieved by the irrigation event is listed for each crop and element combination in this section:

- **TRGSMFL**: File that lists the target soil moisture for each crop during irrigation (maximum 1000 characters); leave blank if target soil moisture is the field capacity
- **IE**: Element identification number; enter 0 if following values are to be used for all elements
- **ICTRGSM**: Target soil moisture as a fraction of field capacity; this number corresponds to the appropriate data column in the Target Soil Moisture Data File (TRGSMFL)

Return Flow Fractions

The return flow fractions for each crop and element combination are listed in this section:

- **IE**: Element identification number; enter 0 if following values are to be used for all elements
- **ICRTRNF**: Fraction of the applied water that becomes return flow; this number corresponds to the appropriate data column in the Return Flow Fractions Data File given in the Root Zone Component Main File

Re-use Fractions

The re-use fractions for each crop and element combination are listed in this section:
IE Element identification number; enter 0 if following values are to be used for all elements

ICRUF Fraction of the applied water that becomes re-used water; this number corresponds to the appropriate data column in the Re-use Fractions Data File given in the Root Zone Component Main File

Minimum Deep Percolation Fractions

If a minimum deep percolation amount needs to be specified, it is listed in this section for each crop and element combination:

DPFL File that lists the minimum deep percolation fractions (maximum 1000 characters); leave blank if minimum deep percolation is not imposed

IE Element identification number; enter 0 if following values are to be used for all elements

ICDPF Fraction of the "infiltrated" applied water that is going to be deep percolation; this number corresponds to the appropriate data column in the Minimum Deep Percolation Fractions Data File (DPFL)

Initial Soil Moisture Conditions

IE Element identification number; enter 0 if following values are to be used for all elements

FSOILMP Fraction of initial soil moisture at element IE that is due to precipitation

SOILM Initial root zone moisture content; [L/L]
INTEGRATED WATER FLOW MODEL (IWFM)

*** Version 0.0.0 ***

NON-PONDED AGRICULTURAL CROPS DATA FILE

Roost Zone Component

for IWFM Simulation

Project: IDC Version 0.0.0 Release

California Department of Water Resources

Filename: NonPondedAg MAIN.dat

File Description

This data file contains the parameters and data file names for the simulation of root zone processes and management of non-ponded agricultural crops.

Number of Non-Ponded Agricultural Crops and Crop Codes

Ncrop : Number of agricultural crops excluding ponded crops (i.e. rice and refuge)

Flrzon : Flag for the root zone moisture to be used for the computation of agricultural water demand and the timing of irrigation

* 0: Use the soil moisture at the beginning of time step

* 1: Use the soil moisture at the end of time step

CROPE : Crop codes (max. 2 characters)

(1 to Ncrop)

* Note: The following codes are reserved and should not be used:

<table>
<thead>
<tr>
<th>Code</th>
<th>Crop Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN</td>
<td>Urban</td>
</tr>
<tr>
<td>RJ</td>
<td>Rice</td>
</tr>
<tr>
<td>RV</td>
<td>Refuge</td>
</tr>
<tr>
<td>NV</td>
<td>Native vegetation</td>
</tr>
</tbody>
</table>

LFNAMP : File that lists the crop areas (max. 1000 characters)

WATER BUDGET OUTPUT FILES

* Leave blank if this output is not required

VALUE

DESCRIPTION

17 / MCRP
8 / FPMB
GR / CODEB1 GRAIN
CO / CODEB2 COTTON
SB / CODEB3 SUGAR BEETS
CR / CODEB4 CORN
DS / CODEB5 DRY SEASON
SP / CODEB6 SAFFLOWER
FI / CODEB7 OTHER FIELD
AL / CODEB8 ALFALFA
DA / CODEB9 PASTURE
TM / CODEB10 TOMATOES
CA / CODEB11 CUCUMBERS
OG / CODEB12 ONIONS AND GARLIC
TR / CODEB13 OTHER TRUCK
AF / CODEB14 ALMONDS AND PISTACHIO
OR / CODEB15 OTHER DECID.
SO / CODEB16 SUBTROPICAL
FL / CODEB17 FALLOW AND IDLE

WATER BUDGET OUTPUT Files

* Leave blank if this output is not required

VALUE

DESCRIPTION

17 / MCRP
8 / FPMB
GR / CODEB1 GRAIN
CO / CODEB2 COTTON
SB / CODEB3 SUGAR BEETS
CR / CODEB4 CORN
DS / CODEB5 DRY SEASON
SP / CODEB6 SAFFLOWER
FI / CODEB7 OTHER FIELD
AL / CODEB8 ALFALFA
DA / CODEB9 PASTURE
TM / CODEB10 TOMATOES
CA / CODEB11 CUCUMBERS
OG / CODEB12 ONIONS AND GARLIC
TR / CODEB13 OTHER TRUCK
AF / CODEB14 ALMONDS AND PISTACHIO
OR / CODEB15 OTHER DECID.
SO / CODEB16 SUBTROPICAL
FL / CODEB17 FALLOW AND IDLE

Budget\NonPondedAgLNM.bim / CLM\BUDFL

Budget\NonPondedAg.bim
Crop/Land Use No.	Name
1 | GR grain
2 | CO cotton
3 | SB sugar beets
4 | OR corn
5 | DB dry beans
6 | SF safflower
7 | FI other fields
8 | AL alfalfa
9 | PA pasture
10 | TM processed tomatoes
11 | CU cucumbers
12 | OG onions & garlic
13 | TR other truck
14 | AP almonds & pistachios
15 | OR other deciduous
16 | SO subtropical
17 | FL fallow and idle

VALUE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| RootDepthFac.dat | / REFACFL
| 1.0 | / FACT

IC

<table>
<thead>
<tr>
<th>IC</th>
<th>ROOT</th>
<th>ICROOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>5.0</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>5.0</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>5.0</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>5.0</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>5.0</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>6.0</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>6.0</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>4.0</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>1.0</td>
<td>17</td>
</tr>
</tbody>
</table>

Curve Numbers for Rainfall Runoff Simulation

Enter curve numbers for each grid element and crop combination.

CN

<table>
<thead>
<tr>
<th>CN</th>
<th>Curve number for each non-ponded agricultural crop (1 to NKROF)</th>
</tr>
</thead>
</table>

BN

<table>
<thead>
<tr>
<th>BN</th>
<th>Curve number for each non-ponded agricultural crop (1 to NKROF)</th>
</tr>
</thead>
</table>

CROP Evapotranspiration (ETC)

The following lists the ETC column pointers for each finite element and non-ponded agricultural crop combination.

IE

<table>
<thead>
<tr>
<th>IE</th>
<th>Element ID (Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</th>
</tr>
</thead>
</table>

ET

| ET | Crop ET (ETC) - this number corresponds to the appropriate data column in the ET data file listed in the Main Input File. List for each non-ponded agricultural crop (1 to NKROD) |

Agricultural Water Supply Requirement

The following lists the agricultural water supply requirement column pointers for each finite element and non-ponded agricultural crop combination.
Irrigation Periods

The following lists the irrigation period column pointers for each finite element and non-ponded agricultural crop combinations.

<table>
<thead>
<tr>
<th>IE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

ETPL

<table>
<thead>
<tr>
<th>IE</th>
<th>File that lists the irrigation periods for each crop (max. 1080 characters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

ECIF

<table>
<thead>
<tr>
<th>IE</th>
<th>Irrigation period - this number corresponds to the appropriate data column in the irrigation period data file (ETPL). List for each non-ponded crop (1 to NCRP).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if agricultural water supply requirement will be computed internally)</td>
</tr>
</tbody>
</table>

Minimum Soil Moisture

The following lists the minimum soil moisture column pointers for each finite element and non-ponded agricultural crop combinations.

<table>
<thead>
<tr>
<th>IE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

ETMIM

<table>
<thead>
<tr>
<th>IE</th>
<th>File that lists the minimum soil moisture for each crop (max. 1088 characters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

ICMIM

<table>
<thead>
<tr>
<th>IE</th>
<th>Minimum soil moisture as a fraction of field capacity - this number corresponds to the appropriate data column in the minimum soil moisture data file (ETMIM). List for each non-ponded crop (1 to NCRP).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

Target Soil Moisture for Irrigation

The following lists the target soil moisture column pointers for each finite element and non-ponded agricultural crop combinations.

<table>
<thead>
<tr>
<th>IE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

ETRMSM

<table>
<thead>
<tr>
<th>IE</th>
<th>File that lists the target soil moisture for each crop during irrigation (max. 1088 characters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

ICTRMSM

<table>
<thead>
<tr>
<th>IE</th>
<th>Target soil moisture as a fraction of field capacity - this number corresponds to the appropriate data column in the target soil moisture data file (ETRMSM). List for each non-ponded crop (1 to NCRP).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>

Irrigation Water Return Flow Fractions

The following lists the irrigation water return flow fraction column pointers for each finite element and non-ponded agricultural crop combinations.

<table>
<thead>
<tr>
<th>IE</th>
<th>Fraction of the applied water that becomes return flow - this number corresponds to the appropriate data column in irrigation water return flow factor data file (RFFL) given in the Root Zone Parameters Data File. List for each non-ponded crop (1 to NCRP).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)</td>
</tr>
</tbody>
</table>
The following lists the irrigation water re-use fraction column pointers.

For each finite element and non-ponded agricultural crop combinations:

- **Element ID** (Enter 0 if following values are to be used for all element and non-ponded agricultural crop combinations)
- **ICROF** : Fraction of the applied water that is re-used – this number corresponds to the appropriate data column in irrigation water re-use factor data file (MOFL) given in the Root Zone Parameters Data File. List for each non-ponded crop (1 to NCROP).

ICROF BY CROFP

Minimum Deep Percolation Fractions

For each finite element:

- **DSFL** : File that lists the minimum deep percolation fractions (max. 1000 characters)
- **Element ID** (Enter 0 if minimum deep percolation is not imposed)
- **ICSPF** : Fraction of the "infiltrated" applied water that is going to be deep percolation – this number corresponds to the appropriate data column in minimum deep percolation factor data file (DSFL). List for each non-ponded crop (1 to NCROP).

Initial Soil Moisture Condition

For Non-Ponded Agricultural Lands:

- **FPOILMO**: Initial soil moisture at element ID that is due to precipitation
- **SOILW** : Initial root zone moisture content: [L/L]

For each finite element and non-ponded agricultural crop combinations:

- **ICSPF1**, **ICSPF2**, **ICSPFNC**

VALUE

DESCRIPTION

DSFL

ICROF

ICSPF
7.3.7.6.2 Non-Ponded Crops Area Data File

Areas of each non-ponded crop at every element are listed in this file:

- FACTLNNP: Conversion factor for land use areas; enter 0.0 if land use distribution is given as a fraction of element area
- NSPLNNP: Number of time steps to update the land use data; enter any number if time-tracking option is on
- NFQLNNP: Repetition frequency of the crop area data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- DSSFL: The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Non-Ponded Crops Area Data File

If the time series data is listed in the Non-Ponded Crops Area Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

- ITLN: Time. For time tracking simulations use MM/DD/YYYY hh:mm format, for non-time tracking simulations enter an integer number.
- IE: Element identification number
- ALAND: Area (or fraction of area) corresponding to non-ponded crops over an element; [L^2] or [L^2/L^2] based on FACTLNNP above
Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE</td>
<td>Element identification number</td>
</tr>
<tr>
<td>LUTYPE</td>
<td>Crop identification number entered sequentially</td>
</tr>
<tr>
<td>PATH</td>
<td>Pathname corresponding to element and non-ponded crop type combination</td>
</tr>
</tbody>
</table>
INTEGRATED WATER FLOW MODEL (IWF)

*** Version 1.0 ***

NON-PONDED CROP AREA FILE
ROOT ZONE COMPONENT
for IWF Simulation

FILE DESCRIPTION
This data file contains the land use distribution of non-ponded crops for each element for the simulation period.

Land Use Data Specifications
FACTLUMP: Conversion factor for land use area
NELU: Number of time steps to update the land use data
WEPC: Weighting factor for the land use data
NDCF: Repetition frequency of the land use data
DOY: Day of the year
SFL: The name of the DOS file for data input

VALUE DESCRIPTION

10.763910417 / FACTLUMP (sq.m. -> sq.ft.)
1 / NELU
0 / NDCF
/ SFL

Land Use Data

List the land use data below, if it will not be read from a DOS file (i.e. SFL is left blank above).

ITEM: Time
IE: Element number
ALMN: Area (or fraction of area) corresponding to non-ponded crops over an element; [L-2] or [L-2/L-2] (based on FACTLUMP above)

1: Non-ponded crop 1
2: Non-ponded crop 2

NCROP: Non-ponded crop number

* Note: Crop areas over elements that are designated as lake elements will be ignored

PATHNAMES FOR LAND USE DATA

List the pathnames for the land use data below, if it will be read from a DOS file (i.e. SFL is specified above).
The pathnames should be listed for each element and non-ponded crop combination. They should be listed in an order such that, the crop type changes first.

Example with 3 non-ponded agricultural crops (i.e. NCROP=3):

<table>
<thead>
<tr>
<th>IE</th>
<th>LUTTPE</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>path[1]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>path[2]</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>path[3]</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>path[4]</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>path[5]</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>path[6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

105
C IE ; Element number
C LUTYPE ; Land use type
 1 = Non-ponded agricultural crop 1
 2 = Non-ponded agricultural crop 2

C NCROP ; Non-ponded agricultural crop NCROP
C PATH ; Pathnames corresponding to element and non-ponded crop type combination

CIE LUTYPE PATH

*
7.3.7.6.3 Root Depth Fractions Data File

This file includes the time series rooting depths as a fraction of the maximum rooting depths listed in the Non-Ponded Crops Main File. The non-ponded crops are associated with data columns in this file through pointers specified in the Non-Ponded Crops Main File.

The following variables are listed in this file:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCOLRDF</td>
<td>Number of data columns for the rooting depth fractions</td>
</tr>
<tr>
<td>NSPRDF</td>
<td>Number of time steps to update the rooting depth fractions; enter any number if time-tracking option is on</td>
</tr>
<tr>
<td>NFQRDF</td>
<td>Repetition frequency of the rooting depth fractions; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number</td>
</tr>
<tr>
<td>DSSFL</td>
<td>The name of the DSS file for data input; leave blank if DSS file is not used for data input</td>
</tr>
</tbody>
</table>

Data Input from Root Depth Fractions Data File

If the time series data is listed in the Root Depth Fractions Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.</td>
</tr>
<tr>
<td>RDFRC</td>
<td>Root depths as a fraction of the maximum rooting depth</td>
</tr>
</tbody>
</table>
Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

- **REC**
 Record number that coincides with the data column number for the time series data

- **PATH**
 Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWFM)

** Version ***

ROOT DEPTH FRACTIONS DATA FILE

Root Zone Component
for IWFM Simulation

Project: IEC Version ## Release
California Department of Water Resources
Filename: RootDepthFrac.dat

This data file contains a set of rooting depths given as a fraction of the maximum rooting depth to represent the root growth for non-ponded and ponded crops.

Root Depth Fractions Data Specifications

NROLFDF : Number of root depth fractions data columns

NSRDF : Number of time steps to update the root depth fractions

* Enter any number if time-tracking option is on

NFQDF : Repetition frequency of the root depth fractions data

* Enter 0 if full time series data is supplied

DSFIL : The name of the DSS file for data input

* Leave blank if DSS file is not used for data input

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NSRDF</td>
</tr>
<tr>
<td>0</td>
<td>NFQDF</td>
</tr>
</tbody>
</table>

Root Depth Fractions

List the root depth fractions (between 0.0 and 1.0) data below, if it will not be read from a DSS file (i.e. DSFIL is left blank above).

TIME : Time

RDFRC : Root depth as a fraction of the maximum rooting depth: [dimensionless]

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2500_04:00</td>
<td>1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td>
</tr>
</tbody>
</table>

Pathnames for Root Depth Fractions Data

(READ FROM DSS FILE)

List the pathnames for root depth fractions data below, if it will be read from a DSS file (i.e. DSFIL is specified above).

REC : Time series record number

PATH : Pathname for the time series record

*
7.3.7.6.4 Irrigation Period Data File

The Irrigation Period Data File includes time series flags that represent cropping seasons for non-ponded crops. A value of 0 represents a non-cropping period so IDC does not compute agricultural water demand for that period; a value of 1 represents cropping period and IDC calculates water demand for that period. The non-ponded crops in each element are associated with data columns in this file through pointers specified in the Non-Ponded Crops Main File.

The following variables are used in this file:

NCOLIP Number of data columns for irrigation period

NSPIP Number of time steps to update the irrigation period data; enter any number if time-tracking option is on

NFQIP Repetition frequency of the irrigation period data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number

DSSFL The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Irrigation Period Data File

If the time series data is listed in the Irrigation Period Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.
| **TIME** | Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number. |
| **IP** | Irrigation period indicator (0 = it is out of cropping season and IDC will not compute a water demand; 1 = cropping season and IDC will compute a water demand) |

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

| **REC** | Record number that coincides with the data column number for the time series data |
| **PATH** | Pathname for the time series record that will be used for data retrieval |
INTEGRATED WATER FLOW MODEL (IWFM)
*** Version *** ***

IRRIGATION PERIOD DATA FILE
Root Zone Component
for IWFM Simulation

Project: 3DC Version Release
California Department of Water Resources
filename: IrrigPeriod.dat

This data file contains a set of irrigation period indicators (1 for irrigation season and 0 for non-irrigation season). These values are correlated to individual crops through the Root Zone Parameter file.

Irrigation Period Data Specifications

NOLIP ; Number of irrigation period data columns
NFIP ; Number of time steps to update the irrigation period data
* Enter any number if time-tracking option is on
 NFIP ; Repetition frequency of the irrigation period data
* Enter 0 if full time series data is supplied
* Enter any number if time-tracking option is on
DSSFL ; The name of the DSS file for input
* Leave blank if DSS file is not used for data input

Irrigation Period Indicators

(READ FROM DSS FILE)

TIME ; Time
IP ; Irrigation period indicator:
0 = non-irrigation period (i.e. agricultural water demand will not be computed)
1 = irrigation period (i.e. agricultural water demand will be computed)

Pathnames for Irrigation Period Data

(READ FROM DSS FILE)

SEC ; Time series record number
PATH ; Pathname for the time series record

SEC PATH
1 /IWF/GR IP/FLAGS/IMLK/IWG3G FES300/
2 /IWF/C3 IP/FLAGS/IMLK/IWG3G FES300/
3 /IWF/GS IP/FLAGS/IMLK/IWG3G FES300/
4 /IWF/GS IP/FLAGS/IMLK/IWG3G FES300/
5 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
6 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
7 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
8 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
9 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
10 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
11 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
12 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
13 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
14 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
15 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
16 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
17 /IWF/NI IP/FLAGS/IMLK/IWG3G FES300/
7.3.7.6.5 Minimum Soil Moisture Data File

This file includes the time series minimum soil moisture data that is used by IDC as an irrigation event trigger. The data is specified as a fraction of the field capacity. In a given time step, if the root zone moisture falls below the minimum soil moisture IDC computes the agricultural supply requirement that is going to raise the moisture up to irrigation target moisture (field capacity, by default) after the losses due to deep percolation and return flow are taken into account. Each non-ponded crop at each grid cell is associated with a data column in this file through pointers listed in the Non-Ponded Crops Main File.

The following variables must be specified in this data file:

NCOLSM Number of minimum soil moisture data columns
NSPSM Number of time steps to update the minimum soil moisture data; enter any number if time-tracking option is on
NFQSM Repetition frequency of the minimum soil moisture data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
DSSFL The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Minimum Soil Moisture Data File

If the time series data is listed in the Minimum Soil Moisture Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.
TIME Time. For time tracking simulations use MM/DD/YYYY hh:mm format, for non-time tracking simulations enter an integer number.

SMMIN Minimum soil moisture as a fraction of field capacity

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC Record number that coincides with the data column number for the time series data

PATH Pathname for the time series record that will be used for data retrieval
MINIMUM SOIL MOISTURE DATA FILE

Root Zone Component

for IRM Simulations

Project: IDC Version 99 Release
California Department of Water Resources
Filename: MinMoist.dat

This data file contains a set of minimum soil moistures as a fraction of field capacity that are used as triggers for irrigation events. The minimum soil moisture value for a particular crop corresponds to the moisture content at the Management Allowable Depletion (MAD) for that crop. These values are correlated to individual crops through the Non-Ponded Crop Data File.

Minimum Soil Moisture Data Specifications

HFGSM : Number of minimum soil moisture data columns
HPFBN : Number of time steps to update the minimum soil moisture data

* Enter any number if time-tracking option is on
HFGSM : Repetition frequency of the minimum soil moisture data
* Enter 0 if full time series data is supplied
* Enter any number if time-tracking option is on
DSSFL : The name of the DSS file for data input
* Leave blank if DSS file is not used for data input

VALUE DESCRIPTION

17 / HFGSM
 / HPFBN
 / DSSFL

Minimum Soil Moisture Data

(READ FROM DSS FILE)

List the minimum soil moisture data below, if it will not be read from a DSS file (i.e., DSSFL is left blank above).

TIME : Time
MINSMN: Minimum soil moisture as a fraction of field capacity; [L/L]

* Crop/Land Use No. Name
 * 000 grain
 * 001 cotton
 * 002 sugar beets
 * 004 corn
 * 005 dry beans
 * 006 alfalfa
 * 007 other field
 * 008 red al
 * 009 pasture
 * 010 tomatoes
 * 011 cucumbers
 * 012 onions & garlic
 * 013 other vegetables
 * 014 almonds & pistachios
 * 015 other deciduous
 * 016 broad
 * 017 fallow

TIME GR CO SB CR DB SF PI AL DA TM CU OG TG AP OR SO FL

12/31/2500 24:00 0.55 0.5 0.45 0.5 0.5 0.4 0.4 0.5 0.6 0.5 0.7 0.5 0.6 0.3 0.5 0.3 0.5

Pathname for Minimum Soil Moisture Data

(READ FROM DSS FILE)

List the pathnames for minimum soil moisture data below, if it will be read from a DSS file (i.e., DSSFL is specified above).

REC : Time series record number
PATH : Pathname for the time series record

REC PATH

7.3.7.6 **Irrigation Target Moisture Data File**

The Irrigation Target Moisture Data File is optional and lists the target moisture that IDC uses to compute the agricultural water supply requirement. This is the moisture level that will be achieved when the irrigation amount is equal to the IDC-computed water demand. The irrigation target moisture is specified as a fraction of the field capacity. A value that is less than 1.0 may represent deficit irrigation conditions (along with proper values of evapotranspiration rate and minimum soil moisture data) while a value that is larger than 1.0 may represent additional irrigation for leaching salts. If this file is omitted, then IDC uses field capacity as the irrigation target moisture. Each non-ponded crop at each element is associated with a data column in this file through pointers specified in the Non-Ponded Crops Data File.

The following variables are used in this file:

- **NCOLTSM** Number of irrigation target soil moisture data columns
- **NSPTSM** Number of time steps to update the irrigation target soil moisture data; enter any number if time-tracking option is on
- **NFQTSM** Repetition frequency of the irrigation target soil moisture data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Irrigation Target Moisture Data File

If the time series data is listed in the Irrigation Target Moisture Data File, then the
following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

TIME
Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.

SMTRG
Irrigation target soil moisture as a fraction of field capacity

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC
Record number that coincides with the data column number for the time series data

PATH
Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWM)

** Version ***

DOCUMENTATION

IRIGATION TARGET SOIL MOISTURE DATA FILE

Root Zone Component for IWM Simulation

Project: IDC Version ### Release

California Department of Water Resources

Filename: TargetMoist.dat

File Description

This data file contains a set of irrigation target soil moistures as a fraction of field capacity that are used in computing irrigation water demand. During an irrigation event the soil moisture is raised to the target soil moisture. Target soil moisture cannot be less than minimum soil moisture specified in the Minimum Soil Moisture data file. These values are correlated to individual crops through the Non-Ponded Crop Data file.

Irrigation Target Soil Moisture Data Specifications

- NCOLTSM : Number of irrigation target soil moisture data columns
- NSPTSM : Number of time steps to update the irrigation target soil moisture data
- * Enter any number if time-tracking option is on
- NFPVTS : Repetition frequency of the irrigation target soil moisture data
- * Enter 0 if full time series data is supplied
- * Enter any number if time-tracking option is on
- DSSFL : The name of the DSS file for data input
- * Leave blank if DSS file is not used for data input

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>/ NCOLTSM</td>
</tr>
<tr>
<td>1</td>
<td>/ NSPTSM</td>
</tr>
<tr>
<td>0</td>
<td>/ NFPVTS</td>
</tr>
<tr>
<td></td>
<td>/ DSSFL</td>
</tr>
</tbody>
</table>

Irrigation Target Soil Moisture Data

List the irrigation target soil moisture data below, if it will not be read from a DSS file (i.e. DSSFL is left blank above).

TIME : Time

SMRAT: Irrigation target soil moisture as a fraction of field capacity; [L/L]

<table>
<thead>
<tr>
<th>Coop/Land Use No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GR grain</td>
</tr>
<tr>
<td>2</td>
<td>CO cotton</td>
</tr>
<tr>
<td>3</td>
<td>SB sugar beets</td>
</tr>
<tr>
<td>4</td>
<td>CR corn</td>
</tr>
<tr>
<td>5</td>
<td>DB dry beans</td>
</tr>
<tr>
<td>6</td>
<td>SF sofflower</td>
</tr>
<tr>
<td>7</td>
<td>PT other field</td>
</tr>
<tr>
<td>8</td>
<td>AL alfalfa</td>
</tr>
<tr>
<td>9</td>
<td>PA pasture</td>
</tr>
<tr>
<td>10</td>
<td>TM tomatoes</td>
</tr>
<tr>
<td>11</td>
<td>CU cucumbers</td>
</tr>
<tr>
<td>12</td>
<td>OS orishas & garlic</td>
</tr>
<tr>
<td>13</td>
<td>TR other truck</td>
</tr>
<tr>
<td>14</td>
<td>AP almonds & pistaches</td>
</tr>
<tr>
<td>15</td>
<td>OR other deciduous</td>
</tr>
<tr>
<td>16</td>
<td>SO subtropical</td>
</tr>
<tr>
<td>17</td>
<td>FL fellow and bare soil</td>
</tr>
</tbody>
</table>

SMRAT

<table>
<thead>
<tr>
<th>TIME</th>
<th>SMRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2560 24:00</td>
<td>1.0 1.0 0.7 1.1 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 0.8</td>
</tr>
</tbody>
</table>

List the pathnames for irrigation target soil moisture data below, if it will be read from a DSS file (i.e. DSSFL is specified above).

DSS : Time series record number
PATH : Filename for the time series record

DSS

118
7.3.7.6.7 Minimum Deep Percolation Fractions Data File

The Minimum Deep Percolation Fractions Data File is optional and lists the minimum deep percolation values that IDC uses to compute the agricultural water supply requirement. This is the deep percolation level that IDC will try to achieve with the applied water during an irrigation event. However, the deep percolation is limited with the saturated hydraulic conductivity of the root zone and IDC may not be able to achieve the user-specified minimum deep percolation if it is greater than the saturated hydraulic conductivity. The minimum deep percolation is specified as a fraction of the infiltrated applied water (i.e. total applied water less the net return flow). This minimum deep percolation data can be used to simulate the irrigation practices to facilitate the leaching of salts. If this file is omitted, then IDC will not try to increase the applied water to achieve a minimum deep percolation. Each non-ponded crop at each element is associated with a data column in this file through pointers specified in the Non-Ponded Crops Data File.

The following variables are used in this file:

NCOLDPF Number of minimum deep percolation data columns
NSPDPF Number of time steps to update the minimum deep percolation data; enter any number if time-tracking option is on
NFQDPF Repetition frequency of the minimum deep percolation data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
DSSFL The name of the DSS file for data input; leave blank if DSS file is not used for data input
Data Input from Minimum Deep Percolation Fractions Data File

If the time series data is listed in the Minimum Deep Percolation Fractions Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

TIME
Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.

LF
Minimum deep percolation as a fraction of the infiltrated applied water

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC
Record number that coincides with the data column number for the time series data

PATH
Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWFM)

*** Version ***

MINIMUM DEEP PERCOLATION FACTORS DATA FILE

- Root Zone Component
- for IWFM Simulation

- Project: ICRC Version *** Release
- California Department of Water Resources
- Filename: MinDeepPerf.dat

File Description

This data file contains a set of minimum deep percolation factors given as fractions of infiltrated irrigation water. These values are correlated to
individual crops through the Non-Ponded Crop Data File.

Minimum Deep Percolation Factors Data Specifications

- NCOLESFF : Number of minimum deep percolation factors data columns
- NEDFF1DF : Number of time steps to update the minimum deep percolation
 * Enter any number if time-tracking option is on
- NEDFF2DF : Repetition frequency of the minimum deep percolation factors data
 * Enter 0 if full time series data is supplied
- NDFF3DF : The name of the DDS file for data input
 * Leave blank if DDS file is not used for data input

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>/ NCOLESFF</td>
</tr>
<tr>
<td>1</td>
<td>/ NEDFF1DF</td>
</tr>
<tr>
<td>0</td>
<td>/ NEDFF2DF</td>
</tr>
<tr>
<td></td>
<td>/ NDFF3DF</td>
</tr>
</tbody>
</table>

Minimum Deep Percolation Factors

(READ FROM THIS FILE)

List the minimum deep percolation factors data below, if it will not be read from
a DDS file (i.e., NDFF3DF is left blank above).

- TIME : Time
- LF : Minimum deep percolation factors as a fraction of infiltrated irrigation water. [dimensionless]

```
<table>
<thead>
<tr>
<th>TIME</th>
<th>DPF(1)</th>
<th>DPF(2)</th>
<th>DPF(3)</th>
<th>...</th>
<th>DPF(NCOLESFF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2010 24:00</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Pathnames for Minimum Deep Percolation Factors Data

(READ FROM DDS FILE)

List the pathnames for minimum deep percolation factors data below, if it will be read from a DDS file (i.e., NDFF3DF is specified above).

- REC : Time series record number
- PATH : Pathname for the time series record

<table>
<thead>
<tr>
<th>REC</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.3.7.7 **Ponded-Crops Component Files**

There are 5 pre-specified ponded crops simulated by IDC: i) rice with flooded decomposition, ii) rice with non-flooded decomposition, iii) rice with no decomposition, iv) seasonal refuges, and v) permanent refuges. Even though refuges are not agricultural lands, their ponding operations are very similar to those of rice fields. Therefore, they are grouped and simulated as ponded crops in IDC.

The following sections describe in detail the input data files that are used to simulated ponded crops.

7.3.7.7.1 **Ponded Crops Main File**

The Ponded Crops Main File is the gateway file for all data that is necessary to simulate ponded crops and generate ponded-crop related budget files.

The file is divided into several sections and uses the following variables:

Land-Use Areas

The filename for the ponded crop areas data file is listed in this section:

- **LUFLP** File that lists the ponded crop areas (maximum 1000 characters)

Budget Output Files

To generate crop-specific land and water use and root zone budgets, the following variables must be specified:

- **NBCROP** Number of ponded crops for water budget output; enter 0 if crop specific budget output is not required
BCCODE Crop codes for which water budget output is required (RICE_FL = rice with flooded decomposition, RICE_NFL = rice with non-flooded decomposition, RICE_NDC = rice with no decomposition, REFUGE_SL = seasonal refuges, REFUGE_PR = permanent refuges)

CLWUBUDFL Binary output file for crop-specific land and water use budget at each subregion for selected crops (maximum 1000 characters); leave blank if this output is not required

CRZBUDFL Binary output file for root zone moisture budget at each subregion for selected crops (maximum 1000 characters); leave blank if this output is not required

Rooting Depths

FACT Conversion factor for rice and refuge root zone depths

ROOTRI_FL Root zone depth for rice with flooded decomposition; [L]

ROOTRI_NFL Root zone depth for rice with non-flooded decomposition; [L]

ROOTRI_NDC Root zone depth for rice with no decomposition; [L]

ROOTRF_SL Root zone depth for seasonal refuges; [L]

ROOTRF_PR Root zone depth for permanent refuges; [L]

Curve Numbers for Rainfall Runoff Simulation

Curve numbers for each element and ponded-crop combination are entered in this section. The curve numbers listed in this section are used only outside the ponding season; during ponding season a value of 100 is used.
IE Element identification number entered sequentially; enter 0 if curve numbers defined for each ponded-crop are to be used for all elements

CNRI_FL Curve number for rice lands with flooded decomposition

CNRI_NFL Curve number for rice lands with non-flooded decomposition

CNRI_NDC Curve number for rice lands with no decomposition

CNRF_SL Curve number for seasonal refuge lands

CNRF_PR Curve number for permanent refuge lands

Crop Evapotranspiration

Crop evapotranspiration for each element and ponded-crop combination is listed here by specifying a column number in the Evapotranspiration File:

IE Element identification number entered sequentially; enter 0 if following values are to be used for all elements

ICETRI_FL Evapotranspiration rate for rice with flooded decomposition; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the Root Zone Component Main File

ICETRI_NFL Evapotranspiration rate for rice with non-flooded decomposition; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the Root Zone Component Main File

ICETRI_NDC Evapotranspiration rate for rice with no decomposition; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the Root Zone Component Main File
ICETRI_SL Evapotranspiration rate for seasonal refuges; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the Root Zone Component Main File

ICETRI_PR Evapotranspiration rate for permanent refuges; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the Root Zone Component Main File

Agricultural Water Supply Requirement

If, for any ponded-crop at an element, the agricultural water supply requirement is pre-specified instead of being computed dynamically, they are specified in this section:

IE Element identification number; enter 0 if following values are to be used for all elements

ICAWRI_FL Agricultural water supply requirement for rice with flooded decomposition; this number corresponds to the appropriate data column in the Agricultural Supply Requirement Data File (AGWDFL) listed in the Root Zone Component Main File (enter 0 if agricultural water supply requirement will be computed dynamically)

ICAWRI_NFL Agricultural water supply requirement for rice with non-flooded decomposition; this number corresponds to the appropriate data column in the Agricultural Supply Requirement Data File (AGWDFL) listed in the Root Zone Component Main File (enter 0 if agricultural water supply requirement will be computed dynamically)
ICAWRI_NDC Agricultural water supply requirement for rice with no decomposition; this number corresponds to the appropriate data column in the Agricultural Supply Requirement Data File (AGWDFL) listed in the Root Zone Component Main File (enter 0 if agricultural water supply requirement will be computed dynamically)

ICAWRF_SL Water supply requirement for seasonal refuges; this number corresponds to the appropriate data column in the Agricultural Supply Requirement Data File (AGWDFL) listed in the Root Zone Component Main File (enter 0 if agricultural water supply requirement will be computed dynamically)

ICAWRF_PR Water supply requirement for permanent refuges; this number corresponds to the appropriate data column in the Agricultural Supply Requirement Data File (AGWDFL) listed in the Root Zone Component Main File (enter 0 if agricultural water supply requirement will be computed dynamically)

Rice and Refuge Operations Input Files

In this section filenames for input data files that list time series ponding depths and pond operation flows are listed:

PNDTHFL File that lists the ponding depths for rice and refuge operations (maximum 1000 characters)

FLOWFL File that lists rice and refuge pond operation flows that include water application depths for non-flooded decomposition of rice, re-use and
return flow depths (maximum 1000 characters)

Ponding Depths

Time series ponding depths for each element and ponded-crop combination are listed in this section.

IE Element identification number; enter 0 if following values are to be used for all element and ponded-crop combinations

ICPDRI_FL Ponding depth for rice with flooded decomposition including depths for decomposition operations; this number corresponds to the appropriate data column in the Ponding Depth Data File (PNDTHFL)

ICPDRI_NFL Ponding depth for rice with non-flooded decomposition; this number corresponds to the appropriate data column in the Ponding Depth Data File (PNDTHFL)

ICPDRI_NDC Ponding depth for rice with no decomposition; this number corresponds to the appropriate data column in the Ponding Depth Data File (PNDTHFL)

ICPDRF_SL Ponding depth for seasonal refuge ponds; this number corresponds to the appropriate data column in the Ponding Depth Data File (PNDTHFL)

ICPDRF_PR Ponding depth for permanent refuge ponds; this number corresponds to the appropriate data column in the Ponding Depth Data File (PNDTHFL)
For rice with non-flooded decomposition, the water application rates for the decomposition of rice are listed here.

IE Element identification number; enter 0 if following values are to be used for all element and ponded-crop combinations

ICDWRI_NFL Water application depth for non-flooded decomposition of rice; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL).

Return Flow Depths

The return flow depths for each crop and element combination are listed in this section. The return flows for rice and refuges include circulation depths as well as lateral subsurface flows (i.e. seepage) into the return flow collection ditches.

IE Element identification number; enter 0 if following values are to be used for all elements

ICRTRI_FL Depth of return flow for rice with flooded decomposition; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)

ICRTRI_NFL Depth of return flow for rice with non-flooded decomposition; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)

ICRTRI_NDC Depth of return flow for rice with no decomposition; this number corresponds to the appropriate data column in the Pond Operation
Flows Data File (FLOWFL)

ICRTRF_SL Depth of return flow for seasonal refuges; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)

ICRTRF_PR Depth of return flow for permanent refuges; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)

Re-use Flow Depth

The re-use flow depths for each crop and element combination are listed in this section:

IE Element identification number; enter 0 if following values are to be used for all elements

ICRUFRFI_FL Depth of re-used water for rice with flooded decomposition; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)

ICRUFRFI_NFL Depth of re-used water for rice with non-flooded decomposition; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)

ICRUFRFI_NDC Depth of re-used water for rice with no decomposition; this number corresponds to the appropriate data column in the Pond Operation Flows Data File (FLOWFL)
ICRUFRF_SL Depth of re-used water at seasonal refuges; this number corresponds to
the appropriate data column in the Pond Operation Flows Data File
(FLOWFL)

ICRUFRF_PR Depth of re-used water at permanent refuges; this number corresponds
to the appropriate data column in the Pond Operation Flows Data File
(FLOWFL)

Initial Soil Moisture Conditions

The initial soil moisture content for each ponded crop and element combination is
listed in this section. For ponded crops, soil moisture content can be greater 1.0; in this case
the portion of the soil moisture above 1.0 represents the ponding depth.

IE Element identification number; enter 0 if following values are to be
 used for all elements

FSOILMP Fraction of initial soil moisture at element IE that is due to
 precipitation

SOILM_RI_FL Initial root zone moisture content for rice with flooded decomposition;
 [L/L]

SOILM_RI_NFL Initial root zone moisture content for rice with non-flooded
decomposition; [L/L]

SOILM_RI_NDC Initial root zone moisture content for rice with no decomposition;
 [L/L]

SOILM_RF_SL Initial root zone moisture content for seasonal refuges; [L/L]

SOILM_RF_PR Initial root zone moisture content for permanent refuges; [L/L]
INTEGRATED WATER FLOW MODEL (IWM)

*** Version ***

RICE AND REFUGE LANDS DATA FILE

Root Zone Component for IWM Simulation

Project: IDE Version **Release**

California Department of Water Resources

Filename: PondsAg_MAIN.dat

File Description

This data file contains the parameters and data file names for the simulation of root zone processes and management of lands with rice and refuge.

Land Use Areas

LULCFL: File that lists the crop areas (max. 1000 characters)

Water Budget Output Files

- **NBCCROP**: Number of ponded crops for water budget output
 - *Notes*: If crop specific budget output is not required
- **BOCODE**: Crop codes for which water budget output is required
 - (1 to NBCCROP)
 - *Use the following crop codes:*
 - **RICE FL**: Rice with flooded decomposition
 - **RICE NFL**: Rice with non-flooded decomposition
 - **RICE NDC**: Rice with no decomposition
 - **REFUGE SL**: Seasonal refuge
 - **REFUGE PR**: Permanent refuge
- **CLMBDFL**: Binary output file for land and water use budget at each
 - subregion for selected crops (max. 1000 characters)
- **CMBDHFL**: Binary output file for root zone moisture budget at each
 - subregion for selected crops (max. 1000 characters)
 - *Leave blank if this output is not required*
- **CMBDHFL**: Binary output file for root zone moisture budget at each
 - subregion for selected crops (max. 1000 characters)
 - *Leave blank if this output is not required*

Value Description

- **FACT**: Conversion factor for rice and refuge root zone depths
- **ROORFL**: Root zone depth for rice with flooded decomposition [L]
- **ROORNFL**: Root zone depth for rice with non-flooded decomposition [L]
- **ROORNDC**: Root zone depth for rice with no decomposition [L]
- **ROORPR**: Root zone depth for seasonal refuges [L]
- **ROORPF**: Root zone depth for permanent refuge [L]

Value Description

- **Curve Numbers for Rainfall Runoff Simulation**
 - **IE**: Element ID (Enter 0 if following values are to be used for all
 element and ponded agricultural crop combinations)
 - **CNRI FL**: Curve number for rice lands with flooded decomposition
 - **CNRI NFL**: Curve number for rice lands with non-flooded decomposition
 - **CNRI NDC**: Curve number for rice lands with no decomposition
 - **CNRF SL**: Curve number for seasonal refuge lands
 - **CNRF PR**: Curve number for permanent refuge lands
 - **Note**: CN for rice and refuge should be entered for the type of
 soil and land cover during non-ponding season. During the
 ponding season CN=108 will be used.

<table>
<thead>
<tr>
<th>IE</th>
<th>CNRI FL</th>
<th>CNRI NFL</th>
<th>CNRI NDC</th>
<th>CNRF SL</th>
<th>CNRF PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

131
The following lists the ETc column pointers for each finite element, rice and refuge combination.

<table>
<thead>
<tr>
<th>IE</th>
<th>ICETRI_FL</th>
<th>ICETRI_NFL</th>
<th>ICETRI_HDC</th>
<th>ICETRI_SL</th>
<th>ICETRI_FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

The following lists the water supply requirement column pointers for each finite element and ponded crop combination.

<table>
<thead>
<tr>
<th>IE</th>
<th>ICWNRFL</th>
<th>ICWNR_HDC</th>
<th>ICWNR_SL</th>
<th>ICWNR_FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The following lists the rice and refuge operations related data files.

<table>
<thead>
<tr>
<th>FIELD</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDNETHFL</td>
<td>File that lists the ponding depths for rice and refuge operations</td>
</tr>
<tr>
<td>(max. 2005 characters)</td>
<td></td>
</tr>
<tr>
<td>FLWDFL</td>
<td>File that lists rice/refuge pond operation flows (water application depths for non-flooded decomposition of rice, re-use and return)</td>
</tr>
<tr>
<td>(max. 1008 characters)</td>
<td></td>
</tr>
</tbody>
</table>
Ponding Depths

IE : Element ID (Enter 0 if following values are to be used for all element and ponded crop combinations)

ICPRL_FL : Ponding depth for rice with flooded decomposition including depths for decomposition operations - this number corresponds to the appropriate data column in the rice/refuge ponding depth data file (FLOWFL).

ICPRL_NFL : Ponding depth for rice with non-flooded decomposition - this number corresponds to the appropriate data column in the rice/refuge ponding depth data file (FLOWFL).

ICPRL_NDC : Ponding depth for rice with no decomposition - this number corresponds to the appropriate data column in the rice/refuge ponding depth data file (FLOWFL).

ICPRE_SL : Ponding depth for seasonal refuge ponds - this number corresponds to the appropriate data column in the rice/refuge ponding depth data file (FLOWFL).

ICPRE_PR : Ponding depth for permanent refuge ponds - this number corresponds to the appropriate data column in the rice/refuge ponding depth data file (FLOWFL).

Application Depths for Non-Flooded Rice Decomposition

IE : Element ID (Enter 0 if following values are to be used for all elements)

ICPRT0_NFL : Water application depth for non-flooded decomposition of rice - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

Return Flow Depths

IE : Element ID (Enter 0 if following values are to be used for all element and ponded crop combinations)

ICPRT0_FL : Depth of return flow for rice with flooded decomposition - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

ICPRT0_NFL : Depth of return flow for rice with non-flooded decomposition - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

ICPRT0_NDC : Depth of return flow for rice with no decomposition - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

Return Flow for Seasonal Refuges

IE : Element ID (Enter 0 if following values are to be used for all elements)

ICPRE_SFL : Depth of return flow for seasonal refuge - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

Return Flow for Permanent Refuges

IE : Element ID (Enter 0 if following values are to be used for all elements)

ICPRE_PFL : Depth of return flow for permanent refuge - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

Re-use Flow Depths

IE : Element ID (Enter 0 if following values are to be used for all element and ponded crop combinations)

ICPRE_RFL : Depth of re-used water at rice with flooded decomposition - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

ICPRE_RNFL : Depth of re-used water at rice with non-flooded decomposition - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

ICPRE_RNDC : Depth of re-used water at rice with no decomposition - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

ICPRE_RSL : Depth of re-used water at seasonal refuge - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

ICPRE_RPR : Depth of re-used water at permanent refuge - this number corresponds to the appropriate data column in the rice/refuge flow data file (FLOWFL).

Initial Soil Moisture Condition

IE : Element ID (0 if following values are to be used for all elements)

PS0LIM : Fraction of initial soil moisture at element IE that is due to precipitation

SOILM_R0 : Initial root zone moisture content for rice with flooded decomposition [L/L]

SOILM_RNFL : Initial root zone moisture content for rice with non-flooded decomposition [L/L]

SOILM_RNDC : Initial root zone moisture content for rice with no decomposition [L/L]

SOILM_RSL : Initial root zone moisture content for seasonal refuge [L/L]

SOILM_RPR : Initial root zone moisture content for permanent refuge [L/L]

Note: SOILM can be greater than 1.0 to reflect ponding conditions for rice and refuge. When SOILM is greater than 1.0, the ponding depth will be computed as Rootdepth x (SOILM-1)

<table>
<thead>
<tr>
<th>C</th>
<th>IE</th>
<th>FDBLHF</th>
<th>BOILM_RI_FL</th>
<th>BOILM_RI_MFL</th>
<th>BOILM_RI_HFC</th>
<th>BOILM_RP_SL</th>
<th>BOILM_RP_FRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.1370</td>
<td>0.1370</td>
<td>0.1370</td>
<td>0.1370</td>
<td>0.1370</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.1371</td>
<td>0.1371</td>
<td>0.1371</td>
<td>0.1371</td>
<td>0.1371</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.1053</td>
<td>0.1053</td>
<td>0.1053</td>
<td>0.1053</td>
<td>0.1053</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>0.5</td>
<td>0.0485</td>
<td>0.0485</td>
<td>0.0485</td>
<td>0.0485</td>
<td>0.0485</td>
<td>0.0485</td>
</tr>
<tr>
<td>223</td>
<td>0.5</td>
<td>0.2232</td>
<td>0.2232</td>
<td>0.2232</td>
<td>0.2232</td>
<td>0.2232</td>
<td>0.2232</td>
</tr>
<tr>
<td>223</td>
<td>0.5</td>
<td>0.1210</td>
<td>0.1210</td>
<td>0.1210</td>
<td>0.1210</td>
<td>0.1210</td>
<td>0.1210</td>
</tr>
</tbody>
</table>
7.3.7.2 Ponded Crops Area Data File

Areas of each ponded crop at every element are listed in this file:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTLNP</td>
<td>Conversion factor for land use areas; enter 0.0 if land use distribution is given as a fraction of element area</td>
</tr>
<tr>
<td>NSPLNP</td>
<td>Number of time steps to update the land use data; enter any number if time-tracking option is on</td>
</tr>
<tr>
<td>NFQLNP</td>
<td>Repetition frequency of the crop area data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number</td>
</tr>
<tr>
<td>DSSFL</td>
<td>The name of the DSS file for data input; leave blank if DSS file is not used for data input</td>
</tr>
</tbody>
</table>

Data Input from Ponded Crops Area Data File

If the time series data is listed in the Ponded Crops Area Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITLN</td>
<td>Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.</td>
</tr>
<tr>
<td>IE</td>
<td>Element identification number</td>
</tr>
<tr>
<td>ALANDRI_FL</td>
<td>Area (or fraction of area) of rice with flooded decomposition over element IE; [L^2] or [L^2/L^2] based on FACTLNP above</td>
</tr>
</tbody>
</table>
ALANDRI_NFL Area (or fraction of area) of rice with non-flooded decomposition over element IE; [L^2] or [L^2/L^2] based on FACTLNP above

ALANDRI_NDC Area (or fraction of area) of rice with no decomposition over element IE; [L^2] or [L^2/L^2] based on FACTLNP above

ALANDRF_SL Area (or fraction of area) of seasonal refuges over element IE; [L^2] or [L^2/L^2] based on FACTLNP above

ALANDRF_PR Area (or fraction of area) of rice with permanent refuges over element IE; [L^2] or [L^2/L^2] based on FACTLNP above

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

IE Element identification number

LUTYPE Land-use identification number entered sequentially (1 = rice with flooded decomposition, 2 = rice with non-flooded decomposition, 3 = rice with no decomposition, 4 = seasonal refuges, 5 = permanent refuges)

PATH Pathname corresponding to element and ponded crop type combination
INTEGRATED WATER FLOW MODEL (IWFM)

*** Version ***

PONDED CROP AREA FILE
Root Zone Component
for IWFM Simulation

Project: IDC Version #8 Release
California Department of Water Resources
Filename: PONDEDArea.dat

File Description
This data file contains the land use distribution of ponded crops for each element for the simulation period.

Land Use Data Specifications
FACTLNF: Conversion factor for land use area
 * Enter 0.0 if land use distribution is given as a fraction of element area
NSPLNF : Number of time steps to update the land use data
 * Enter any number if time-tracking option is on
NPLNF : Repetition frequency of the land use data
 * Enter 0 if full time series data is supplied
 * Enter any number if time-tracking option is on
DSPLFL : The name of the DSS file for data input
 * Leave blank if DSS file is not used for data input

VALUE DESCRIPTION
10.763910417 / FACTLNF (sq.m. -> sq.ft.)
1 / NSPLNF
0 / NPLNF
/ DSPLFL

Land Use Data
(READ FROM THIS FILE)
List the land use data below, if it will not be read from a DSS file (i.e. DSPLFL is left blank above)

ITLN : Time
IE : Element number
ALANDRI_FL : Rice area (or fraction of area) over an element with flooded decomposition: [L^2] or [L^2/L^2] (based on FACTLNF above)
ALANDRI_NFL: Rice area (or fraction of area) over an element with non-flooded decomposition: [L^2] or [L^2/L^2] (based on FACTLNF above)
ALANDRI_HDC: Rice area (or fraction of area) over an element with no decomposition: [L^2] or [L^2/L^2] (based on FACTLNF above)
ALANDRI_SL : Seasonal refuge area (or fraction of area) over an element: [L^2] or [L^2/L^2] (based on FACTLNF above)
ALANDRI_SR : Permanent refuge area (or fraction of area) over an element: [L^2] or [L^2/L^2] (based on FACTLNF above)
 * Note: Crop areas over elements that are designated as lake elements will be ignored

<table>
<thead>
<tr>
<th>ITLN</th>
<th>IE</th>
<th>ALANDRI_FL</th>
<th>ALANDRI_NFL</th>
<th>ALANDRI_HDC</th>
<th>ALANDRI_SL</th>
<th>ALANDRI_SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2008 24:00</td>
<td>1</td>
<td>311.19</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>409740.24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>115571.27</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>303088.10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>27976.28</td>
</tr>
<tr>
<td>220</td>
<td>1687496.62</td>
<td>0.0600</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>4631.79</td>
</tr>
<tr>
<td>221</td>
<td>13081.29</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1471081.66</td>
</tr>
<tr>
<td>222</td>
<td>50187.12</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>223</td>
<td>950187.12</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

PATHnames for Land Use Data
(READ FROM DSS FILE)
List the pathnames for the land use data below, if it will be read from a DSS file (i.e. DSPLFL is specified above).

The pathnames should be listed for each element and ponded crop combination. They should be listed in an order such that, the crop type changes first.

* Example:

<table>
<thead>
<tr>
<th>IE</th>
<th>LUTYPE</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>path[1]</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>path[2]</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>path[1]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>path[2]</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>path[4]</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>path[5]</td>
</tr>
</tbody>
</table>
2 5 (pathname[10])

IE ; Element number
LTYPE ; Land use type
 1 = Rice with flooded decomposition
 2 = Rice with non-flooded decomposition
 3 = Rice with no decomposition
 4 = Seasonal Refuge
 5 = Permanent refuge
PATH ; Pathname corresponding to element and ponded crop type combination

IE LTYPE PATH

* *

138
7.3.7.3 *Ponding Depth Data File*

This file includes the time series pond depths for rice and refuges. The ponded crops are associated with data columns in this file through pointers specified in the Ponded Crops Main File.

The following variables are listed in this file:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCOLPND</td>
<td>Number of pond depth data columns</td>
</tr>
<tr>
<td>FACTPND</td>
<td>Conversion factor pond depths</td>
</tr>
<tr>
<td>NSPPND</td>
<td>Number of time steps to update the pond depths; enter any number if time-tracking option is on</td>
</tr>
<tr>
<td>NFQPND</td>
<td>Repetition frequency of the pond depths; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number</td>
</tr>
<tr>
<td>DSSFL</td>
<td>The name of the DSS file for data input; leave blank if DSS file is not used for data input</td>
</tr>
</tbody>
</table>

Data Input from Ponding Depth Data File

If the time series data is listed in the Ponding Depth Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>Time. For time tracking simulations use MM/DD/YYYY.hh:mm format, for non-time tracking simulations enter an integer number.</td>
</tr>
</tbody>
</table>
PND Pond depth; [L]

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC</td>
<td>Record number that coincides with the data column number for the time series data</td>
</tr>
<tr>
<td>PATH</td>
<td>Pathname for the time series record that will be used for data retrieval</td>
</tr>
</tbody>
</table>
INTEGRATED WATER FLOW MODEL (IWF)

*** Version #0 ***

RICE/REFUGE POND DEPTH DATA FILE
Root Zone Component
for IWFM Simulation

Project: IDC Version #0 Release
California Department of Water Resources
Filename: PondDepth.dat

File Description
This data file contains a set of ponding depths for rice fields and refuges. These values are correlated to individual grid elements through the Rice/Refuge Data File.

Rice/Refuge Pond Depth Data Specifications

NCOLPND : Number of pond depth data columns
FACTPND : Conversion factor for pond depths
NSPND : Number of time steps to update the pond depths
* Enter any number if time-tracking option is on
NPRDND : Repetition frequency of the pond depth data
* Enter 0 if full time series data is supplied
* Enter any number if time-tracking option is on
DSSFL : The name of the DSS file for data input
* Leave blank if DSS file is not used for data input

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>/NCPND</td>
</tr>
<tr>
<td>0.08333</td>
<td>/FACTPND (in -> ft)</td>
</tr>
<tr>
<td>1</td>
<td>/NSPND</td>
</tr>
<tr>
<td>0</td>
<td>/NPRDND</td>
</tr>
<tr>
<td></td>
<td>/DSSFL</td>
</tr>
</tbody>
</table>

Rice/Refuge Pond Depth Data
(READ FROM THIS FILE)

List the rice/refuge pond depths below, if it will not be read from a DSS file (i.e. DSSFL is left blank above).

TIME : Time
PHD : Pond depths; [L]
* Column 1: Growing season and decrop ponding depths for flooded-decrop rice
* Column 2: Ponding depth for permanent refuges

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/09/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/30/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/30/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/30/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/30/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/4800</td>
<td>24:00</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pathnames for Pond Depths
(READ FROM DSS FILE)

List the pathnames for pond depths below, if it will be read from a DSS file (i.e. DSSFL is specified above).

REC : Time series record number
PATH : Pathname for the time series record

**
7.3.7.7.4 Pond Operation Flows Data File

This file lists unit flow rates that represent the pond and decomposition operations such as return flows, amounts of re-used return flows and the application rates for the non-flooded rice decomposition. The data columns in this file are associated with specific ponded crops through pointers specified in the Ponded Crops Main File.

The following variables are used:

NCOLFLW Number of data columns for pond operation flow rates
FACTFLW Conversion factor for the spatial component of the pond operation flow rates
NSPFLW Number of time steps to update the pond operation flow rates; enter any number if time-tracking option is on
NFQFLW Repetition frequency of the pond operation flow rates; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
DSSFL The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Pond Operation Flows Data File

If the time series data is listed in the Pond Operation Flows Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.
TIME Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.

FLW Pond operation flow rates; [L/T]

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC Record number that coincides with the data column number for the time series data

PATH Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (IWFM)

*** Version ***

RICE/REFUSE OPERATION FLOW RATE DATA FILE

Root Zone Component

For IWFM Simulation

Project: IDC Version #8 Release
California Department of Water Resources

Filename: RiceRefuseFlowRate.dat

File Description

This data file contains a set of flow rates (in units of L/T) to be used for simulating the rice and refuse return flows, re-use and water application rates for non-flooded rice decomposition. These values are correlated to individual grid elements through the Rice/Refuse Data file.

Rice/Refuse Operation Flow Rate Data Specifications

- **NCOLFLW**: Number of data columns
- **FACTFLW**: Conversion factor for operation flow rates
 - It is used to convert only the spatial component of the unit.
 - DO NOT include the conversion factor for time component of the unit.
 - e.g., Unit of depth listed in this file = INCHES/MONTH
 - Consistent unit used in simulation = FT/DAY
 - Enter FACTFLW (INCHES/MONTH -> FT/DAY) = 0.083333
 - Conversion of MONTH -> DAY is performed automatically.
- **NSTEPFLW**: Number of time steps to update the operation flow rates
 - * Enter any number if time-tracking option is on
- **NREPEATFLW**: Repetition frequency of the operation flow rate data
 - * Enter 0 if full time series data is supplied
 - * Enter any number if time-tracking option is on
- **DSFL**: The name of the DSS file for data input
 - * leave blank if DSS file is not used for data input

VALUE DESCRIPTION

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NCOLFLW</td>
</tr>
<tr>
<td>0.08333</td>
<td>FACTFLW (in/mon -> ft/mon)</td>
</tr>
<tr>
<td>1</td>
<td>NEQUIFLW</td>
</tr>
<tr>
<td>0</td>
<td>NREPEATFLW</td>
</tr>
<tr>
<td></td>
<td>DSFL</td>
</tr>
</tbody>
</table>

Rice/Refuse Operation Flow Rate Data

(READ FROM THIS FILE)

List the rice/Refuse operation flow rates below, if it will not be read from a DSS file (i.e. DSFL is left blank above).

TIME: Time

<table>
<thead>
<tr>
<th>FLW</th>
<th>Operation flow rates: L/T</th>
</tr>
</thead>
</table>

- *Column 1*: Flow thru (return flow) depth for entire year for flooded-decomp rice
- *Column 2*: Return flow depth for permanent rice
- *Column 3*: Re-use depth for flooded decomp rice
- *Column 4*: Re-use depth for refuges
- *Column 5*: Application depth for non-ponded decomp rice

<table>
<thead>
<tr>
<th>TIME</th>
<th>FLW(1)</th>
<th>FLW(2)</th>
<th>FLW(3)</th>
<th>FLW(4)</th>
<th>FLW(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/31/4000 24:00</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>02/09/4000 24:00</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>03/21/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04/08/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05/31/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>06/29/4000 24:00</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>07/31/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>08/31/4000 24:00</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>09/30/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10/31/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11/30/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12/31/4000 24:00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Pathnames for Operation Flow Rates

(READ FROM DSS FILE)

List the pathnames for operation flow rates below, if it will be read from a DSS file (i.e. DSFL is specified above).

REC: Time series record number

DPATH: Pathname for the time series record
7.3.7.8 Urban Component Files

7.3.7.8.1 Urban Lands Main File

The Urban Lands Main File is the gateway file for all data that is necessary to simulate land surface and root zone flow processes in urban lands.

The file is divided into several sections and uses the following variables:

Land-Use Areas

The filename for the urban areas data file is listed in this section:

LUFLU File that lists the urban areas (maximum 1000 characters)

Rooting Depth

FACT Conversion factor for urban outdoors root zone depth
ROOTURB Root zone depth for urban outdoors; [L]

Urban Water Use, Management and Simulation Parameters

POPULFL File that lists the time series urban population data (maximum 1000 characters)
WTRUSEFL File that lists the rates of per capita water use (maximum 1000 characters)
URBSPECFL File that lists the urban water use specifications (maximum 1000 characters)
IE Element identification number
PERV Fraction of pervious area to total urban areas
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNURB</td>
<td>Curve number for urban lands</td>
</tr>
<tr>
<td>ICPOPUL</td>
<td>Population; this number corresponds to the appropriate data column in the Population Data File (POPULFL)</td>
</tr>
<tr>
<td>ICWTRUSE</td>
<td>Per capita water use; this number corresponds to the appropriate data column in the Per Capita Water Use Data File (WTRUSEFL)</td>
</tr>
<tr>
<td>FRACDM</td>
<td>Relative proportion of the urban demand computed by multiplying population with per capita water use to be applied to element IE</td>
</tr>
<tr>
<td>ICETURB</td>
<td>Urban evapotranspiration; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the IDC Main Input File</td>
</tr>
<tr>
<td>ICRTFURB</td>
<td>Fraction of the urban applied water that becomes return flow; this number corresponds to the appropriate data column in the Return Flow Fractions Data File (RFFL) specified in the Root Zone Component Main File; for urban lands (return flow fraction applies only to pervious (lawns, parks, etc) urban areas; all water delivered to urban indoor areas becomes return flow)</td>
</tr>
<tr>
<td>ICRUFURB</td>
<td>Fraction of the urban applied water that is re-used; this number corresponds to the appropriate data column in the Re-use Fractions Data File (RUFL) specified in the Root Zone Component Main File</td>
</tr>
<tr>
<td>ICURBSPEC</td>
<td>Urban water use specification data as a fraction of total urban water that is used indoors; this number corresponds to the appropriate data column in the Urban Water Use Specifications Data File (URBSPECFL)</td>
</tr>
</tbody>
</table>
Initial Soil Moisture Conditions

The initial soil moisture content for urban outdoors at each element is listed in this section.

<table>
<thead>
<tr>
<th>IE</th>
<th>Element identification number; enter 0 if following values are to be used for all elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSOILMP</td>
<td>Fraction of initial soil moisture at element IE that is due to precipitation</td>
</tr>
<tr>
<td>SOILM</td>
<td>Initial root zone moisture content for urban outdoors; [L/L]</td>
</tr>
</tbody>
</table>
INTEGRATED WATER FLOW MODEL (IWF MODEL)

***Version ***

UWAM DATA FILE

ROOT Zone Component

for IWF Simulation

Project: IWF Version ## Reuse

California Department of Water Resources

Filename: Urban_Main.dat

File Description

This data file contains the parameters and data file names for the simulation of root zone processes and management of urban lands.

Land Use Areas

LULU = File that lists the urban areas (max. 1000 characters)

RootZone\Urban\UrbanArea.dat / LULU

FACT = Conversion factor for urban root zone depth

ROOTUR = Urban Root Zone Depth, [L]

VALUE DESCRIPTION

1.0 / FACT

2.0 / ROOTUR

Urban Water Use, Management and Simulation Parameters

FORMUL1 = File that lists the urban population (max. 1000 characters)

FORMUL2 = File that lists the urban water use specifications (max. 1000 characters)

IE = Element ID

PERV = Fraction of pervious area to total urban area

CURB = Curve number for urban lands

ICPORDL = Population - this number corresponds to the appropriate data column in the Population file (FORMUL1)

ICWATERL = Per capita water use - this number corresponds to the appropriate data column in the Per Capita Water Use file (FORMUL2)

PROMC = Relative proportion of urban water demand of per capita water use applied to element IE

ICETURB = Urban ET - this number corresponds to the appropriate data column in the ET data file listed in the Main Control Data file.

ICMRTURB = Fraction of the urban applied water that becomes return flow - this number corresponds to the appropriate data column in irrigation water return flow factor data file (FORMUL1).

ICMRFU = Fraction of the applied water that is re-used - this number corresponds to the appropriate data column in irrigation water re-use factor data file (FORMUL1).

ICURBSPEC = Urban water use specification data as a fraction of total urban water that is used incoost - this number corresponds to the appropriate data column in the urban water use specifications data file (URBSPECFL).

VALUE DESCRIPTION

RootZone\Urban\Population.dat / FORMUL1

RootZone\Urban\Waterspec.dat / FORMUL2

RootZone\Urban\UrbanSpecs.dat / URBSPECFL

Initial Soil Moisture Condition

For Urban Lands

IE = Element ID (0 if following values are to be used for all elements)

Tcritical = Initial soil moisture at element IE that is due to precipitation

DOILM = Initial root zone moisture content for urban lands, [L/L]

<table>
<thead>
<tr>
<th>ID</th>
<th>PERV</th>
<th>CURB</th>
<th>ICPORDL</th>
<th>ICWATERL</th>
<th>PROMC</th>
<th>ICETURB</th>
<th>ICMTURB</th>
<th>ICURBSPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.62</td>
<td>79</td>
<td>1</td>
<td>4</td>
<td>831.00</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.62</td>
<td>79</td>
<td>1</td>
<td>4</td>
<td>831.00</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>69</td>
<td>1</td>
<td>4</td>
<td>831.00</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0.62</td>
<td>69</td>
<td>1</td>
<td>4</td>
<td>831.00</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>221</td>
<td>0.62</td>
<td>79</td>
<td>1</td>
<td>2</td>
<td>2988.20</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>222</td>
<td>0.62</td>
<td>69</td>
<td>1</td>
<td>4</td>
<td>2988.20</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>223</td>
<td>0.62</td>
<td>69</td>
<td>1</td>
<td>4</td>
<td>2988.20</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

148
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>0.5</td>
<td>0.0415</td>
</tr>
<tr>
<td>222</td>
<td>0.5</td>
<td>0.2322</td>
</tr>
<tr>
<td>223</td>
<td>0.5</td>
<td>0.1210</td>
</tr>
</tbody>
</table>
7.3.7.8.2 *Urban Area Data File*

Area of urban lands at every element are listed in this file:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTLNU</td>
<td>Conversion factor for land use areas; enter 0.0 if land use distribution is given as a fraction of element area</td>
</tr>
<tr>
<td>NSPLNU</td>
<td>Number of time steps to update the land use data; enter any number if time-tracking option is on</td>
</tr>
<tr>
<td>NFQLNU</td>
<td>Repetition frequency of the land use data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number</td>
</tr>
<tr>
<td>DSSFL</td>
<td>The name of the DSS file for data input; leave blank if DSS file is not used for data input</td>
</tr>
</tbody>
</table>

Data Input from Urban Area Data File

If the time series data is listed in the Urban Area Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITLN</td>
<td>Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.</td>
</tr>
<tr>
<td>IE</td>
<td>Element identification number</td>
</tr>
<tr>
<td>ALANDU</td>
<td>Urban area (or fraction of area) over element IE; [L^2] or [L^2/L^2] based on FACTLNU above</td>
</tr>
</tbody>
</table>
Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

IE Element identification number
PATH Pathname corresponding to urban area at element IE
INTEGRATED WATER FLOW MODEL (IWM)
*** Version 0.0 ***

URBAN AREA FILE
Root Zone Component
for IWM Simulation

Project: IDC Version 0.0 Release
California Department of Water Resources
Filename: UrbanArea.dat

This data file contains the land use distribution of urban lands for
each element for the simulation period.

Land Use Data Specifications

FACTLH requirement for land use area

HFLN : Number of time steps to update the land use data
 * Enter any number if time-tracking option is on

HFLN : Repetition frequency of the land use data
 * Enter 0 if full time series data is supplied

DSSFL : The name of the DSS file for data input
 * Leave blank if DSS file is not used for data input

VALUE DESCRIPTION
1 10.765910417 / FACTLH (sq. m. -> sq. ft.)
2 1 / HFLN
3 0 / HFLN

Land Use Data
(READ FROM THIS FILE)
List the land use data below, if it will not be read from a DSS file
(i.e. DSSFL is left blank above).

TTLH ; Time
IE ; Element number
ALANU ; Urban area (or fraction of area) over an element; [L/2] or [L/2/L/2] (based on FACTLH above)
 * Note: Urban areas over elements that are designated as lake elements
 will be ignored

12/31/2508 24:00

IE ALANU
1 933.00
2 0.00
3 297.24
4 2946.76
5 0.00
6 0.00
7 0.00
8 0.00
219 99086.84
220 110491.22
221 2969.20
222 0.00
223 23114.89

Pathnames for Land Use Data
(READ FROM DSS FILE)
List the pathnames for the land use data below, if it will be read from a DSS file
(i.e. DSSFL is specified above).

IE PATH

*
7.3.7.8.3

Population Data File

This file lists urban population. Urban land in each element is associated with a data column in this file through pointers specified in the Urban Main File.

The following variables are listed in this file:

- **NCOLPOP** Number of population data columns
- **NSPPOP** Number of time steps to update the population data; enter any number if time-tracking option is on
- **NFQPOP** Repetition frequency of the population data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Population Data File

If the time series data is listed in the Population Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

- **ITPOP** Time. For time tracking simulations use MM/DD/YYYY hh:mm format, for non-time tracking simulations enter an integer number.
- **POPUL** Population: [people]
Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

I Record number that coincides with the data column number for the time series data

PATH Pathname for the time series record that will be used for data retrieval
INTEGRETED WATER FLOW MODEL (INFH)
*** Version #0 ***

POPULATION DATA FILE
Root Zone Component
for INFH Simulation

Project: IDC Version #0 Release
California Department of Water Resources
Filename: Population.dat

File Description
This data file contains a set of population data on a time-series basis

Population Data Specifications

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/ NCOLPOP</td>
</tr>
<tr>
<td>1</td>
<td>/ NSPOP</td>
</tr>
<tr>
<td>0</td>
<td>/ INCF</td>
</tr>
<tr>
<td></td>
<td>/ DBSFL</td>
</tr>
</tbody>
</table>

(READ FROM DBS FILE)

List the population data below, if it will not be read from a
DBS file (i.e. DBSFL is left blank above).

ITPOP: Time
POPUL: Population: [People]

| 12/31/2500 24:00 | 380000 |

(READ FROM DBS FILE)

List the pathnames for the population data below, if it will be read
from a DBS file (i.e. DBSFL is specified above).

PATH: Pathname
PATH1: Pathname for the time series record

PATH

7.3.7.8.4 **Per Capita Water Use Data File**

Time series per-capita water use rates are listed in this file. The urban areas at each element are associated with a data column in this file through pointers specified in the Urban Lands Main File.

The following variables are used in this file:

- **NCOLWU** Number of per capita water use data columns
- **FACTWU** Conversion factor for the spatial component of the per capita water use data
- **NSPWU** Number of time steps to update the per capita water use data; enter any number if time-tracking option is on
- **NFQWU** Repetition frequency of the per capita water use data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Per Capita Water Use Data File

If the time series data is listed in the Per Capita Water Use Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

- **ITWU** Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.
WU Per capita water use; [(L³/T)/person]

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC Record number that coincides with the data column number for the time series data

PATH Pathname for the time series record that will be used for data retrieval
INTEGRATED WATER FLOW MODEL (INFLOW)

*** Version ***

PER CAPITA WATER USE DATA FILE
Root Zone Component
for INFLOW Simulation

Project: ISC Version Release
California Department of Water Resources
Filename: WaterUse.dat

File Description
This data file contains a set of per capita water use data on a time-series basis. Water use includes both indoors (MIl) and outdoors water.

Per Capita Water Use Data Specifications

WCUWU ; Number of water use data columns
FACTMU ; Conversion factor for the water use data
 It is used to convert only the spatial component of the unit;
 DO NOT include the conversion factor for time component of the unit.
 * e.g. Unit of flow listed in this file = AC-FT/Y/MONTH
 Consistent unit used in simulation = CUL/FT/Y
 Enter FACTMU (AC-FT/Y/MONTH -> CUL/FT/Y) = 2.255628x10^-5
 (conversion of MONTH -> DAY is performed automatically)
NSWU ; Number of time steps to update the water use data
 * Enter any number if time-tracking option is on
NFQWU ; Repetition frequency of the water use data
 * Enter 0 if full time series data is supplied
 * Enter any number if time-tracking option is on
DSSTL ; The name of the DSST file for data input (maximum 50 characters).
 * Leave blank if DSST file is not used for data input

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>43560.0</td>
<td>FACTMU (ac. ft. -> cu. ft.)</td>
</tr>
<tr>
<td>1</td>
<td>NSWU</td>
</tr>
<tr>
<td>0</td>
<td>NFQWU</td>
</tr>
<tr>
<td>DSSTL</td>
<td></td>
</tr>
</tbody>
</table>

Per Capita Water Use Data
(READ FROM THIS FILE)

List the per capita water use data below, if it will not be read from a
DSST file (i.e., DSSTL is left blank above).

| ITWU ; Time |
| WU ; Per capita water use (L^2/T/PERSON) |

<table>
<thead>
<tr>
<th>ITWU</th>
<th>WU(1)</th>
<th>WU(2)</th>
<th>WU(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/31/400x 24:00</td>
<td>0.0014928</td>
<td>0.0013725</td>
<td>0.0000844</td>
</tr>
<tr>
<td>02/09/400x 24:00</td>
<td>0.0014928</td>
<td>0.0013725</td>
<td>0.0000844</td>
</tr>
<tr>
<td>03/31/400x 24:00</td>
<td>0.0014928</td>
<td>0.0013725</td>
<td>0.0000844</td>
</tr>
<tr>
<td>04/30/400x 24:00</td>
<td>0.0028199</td>
<td>0.0025926</td>
<td>0.0001595</td>
</tr>
<tr>
<td>05/31/400x 24:00</td>
<td>0.0036492</td>
<td>0.0033511</td>
<td>0.0012454</td>
</tr>
<tr>
<td>06/30/400x 24:00</td>
<td>0.0041468</td>
<td>0.0038126</td>
<td>0.0023444</td>
</tr>
<tr>
<td>07/31/400x 24:00</td>
<td>0.0044444</td>
<td>0.0047271</td>
<td>0.0024567</td>
</tr>
<tr>
<td>08/31/400x 24:00</td>
<td>0.0043381</td>
<td>0.0033619</td>
<td>0.0003540</td>
</tr>
<tr>
<td>09/30/400x 24:00</td>
<td>0.0034283</td>
<td>0.0020226</td>
<td>0.0001970</td>
</tr>
<tr>
<td>10/31/400x 24:00</td>
<td>0.0025664</td>
<td>0.0019826</td>
<td>0.0002220</td>
</tr>
<tr>
<td>11/30/400x 24:00</td>
<td>0.0016587</td>
<td>0.0015250</td>
<td>0.0009390</td>
</tr>
<tr>
<td>12/31/400x 24:00</td>
<td>0.0014928</td>
<td>0.0013725</td>
<td>0.0000844</td>
</tr>
</tbody>
</table>

Pathnames for Per Capita Water Use Data
(READ FROM DSST FILE)

List the pathnames for the per capita water use data below, if it will be read
from a DSST file (i.e., DSSTL is specified above).

| SEC ; Time series record number |
| PATH ; Pathname for the time series record |

**
7.3.7.8.5 Urban Water Use Specifications Data File

Time series urban water use specification in terms of the fraction of indoor water use to total urban water use are listed in this file. The urban areas at each element are associated with a data column in this file through pointers specified in the Urban Lands Main File.

The following variables are used in this file:

- **NURBSP** Number of urban water use specifications data columns
- **NSPURBSP** Number of time steps to update the urban water use specifications data; enter any number if time-tracking option is on
- **NFQURBSP** Repetition frequency of the urban water use specifications data; a value of zero indicates that a full time series data set is supplied; if time tracking simulation, enter any number
- **DSSFL** The name of the DSS file for data input; leave blank if DSS file is not used for data input

Data Input from Urban Water Use Specifications Data File

If the time series data is listed in the Urban Water Use Specifications Data File, then the following variables need to be populated. Otherwise, these variables should be commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File” section below should be populated.

- **ITUSP** Time. For time tracking simulations use MM/DD/YYYY_hh:mm format, for non-time tracking simulations enter an integer number.
- **URINDR** Fraction of total urban water that is used indoors
Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

REC
Record number that coincides with the data column number for the time series data

PATH
Pathname for the time series record that will be used for data retrieval
Urban Water Use Data Specifications

- **ITUFP**: Time
- **URINDR**: Fraction of total urban water that is used indoors

```
10/21/4000 24:00 0.5
11/21/4000 24:00 0.7
12/21/4000 24:00 0.8
01/21/4000 24:00 1.00
02/29/4000 24:00 1.00
03/21/4000 24:00 0.6
04/21/4000 24:00 0.3
05/21/4000 24:00 0.45
06/21/4000 24:00 0.4
07/21/4000 24:00 0.4
08/21/4000 24:00 0.4
09/21/4000 24:00 0.4
```

Pathnames for Urban Water Use Data

- **REC**: Time series record number
- **PATH**: Pathname for the time series record

```
REC  PATH
---  ----
```
7.3.7.9 Native and Riparian Vegetation Component Files

7.3.7.9.1 Native and Riparian Vegetation Lands Main File

The Native and Riparian Vegetation Lands Main File is the gateway file for all data that is necessary to simulate land surface and root zone flow processes in areas that are covered with native and riparian vegetation.

The file is divided into several sections and uses the following variables:

Land-Use Areas

The filename for the native and riparian areas data file is listed in this section:

- LUFLNVRV File that lists the urban areas (maximum 1000 characters)

Rooting Depths

- FACT Conversion factor for native and riparian vegetation root zone depths
- ROOTNV Root zone depth for native vegetation; [L]
- ROOTRV Root zone depth for riparian vegetation; [L]

Native and Riparian Vegetation Simulation Parameters

- IE Element identification number entered sequentially; enter 0 if the following values are to be used for all elements
- CNNV Curve number for native vegetation lands
- CNRV Curve number for riparian vegetation lands
ICETNV Native vegetation evapotranspiration rate; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the IDC Main Input File

ICETRV Riparian vegetation evapotranspiration rate; this number corresponds to the appropriate data column in the Evapotranspiration File listed in the IDC Main Input File

Initial Soil Moisture Conditions

The initial soil moisture contents for native and riparian vegetation at each element are listed in this section.

IE Element identification number; enter 0 if following values are to be used for all elements

SOILM_NV Initial root zone moisture content for native vegetation at element IE; [L/L]

SOILM_RV Initial root zone moisture content for riparian vegetation at element IE; [L/L]

INTEGRATED WATER FLOW MODEL (IWFM)

*** Version ***

NATIVE AND RIPARIAN VEGETATION DATA FILE

Root Zone Component for IWFM Simulation

Project: IDC Version Release
California Department of Water Resources
Filename: NVK_MAIN.dat

FILE DESCRIPTION

This data file contains the parameters and data file names for the simulation of root zone processes for native and riparian vegetation.

LAND USE AREAS

LULC/VAV: File that lists the land use areas (max. 1000 characters)

RootZone\NVK\VAV\Areas.dat / LULC/VAV

ROOTING DEPTHS

FACT: Conversion factor for root zone depths
ROO/PRV: Native veg. root zone depth; [L]
RPV/PRV: Riparian veg. root zone depth; [L]

<table>
<thead>
<tr>
<th>FACT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>/ ROO/PRV</td>
</tr>
<tr>
<td>1.0</td>
<td>/ RPV/PRV</td>
</tr>
</tbody>
</table>

NATIVE AND RIPARIAN VEGETATION ROOT ZONE SIMULATION PARAMETERS

IE: Element ID (0 if following values are to be used for all elements)
CNRV: Curve number for native vegetation lands
CNRW: Curve number for riparian vegetation lands
CNTRV: Native vegetation ETc - this number corresponds to the appropriate data column in the ET data file listed in the Main Control Data file.
CNTRW: Riparian vegetation ETc - this number corresponds to the appropriate data column in the ET data file listed in the Main Control Data file.

<table>
<thead>
<tr>
<th>IE</th>
<th>CNRV</th>
<th>CNRW</th>
<th>CNTRV</th>
<th>CNTRW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>71</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>58</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>71</td>
<td>71</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>222</td>
<td>58</td>
<td>58</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

INITIAL SOIL MOISTURE CONDITION

IE: Element ID (0 if following values are to be used for all elements)
SOILM NV: Initial root zone moisture content for native vegetation area; [L/L]
SOILM RV: Initial root zone moisture content for riparian vegetation area; [L/L]

<table>
<thead>
<tr>
<th>IE</th>
<th>SOILM NV</th>
<th>SOILM RV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1270</td>
<td>0.1270</td>
</tr>
<tr>
<td>2</td>
<td>0.1571</td>
<td>0.1571</td>
</tr>
<tr>
<td>3</td>
<td>0.1053</td>
<td>0.1053</td>
</tr>
<tr>
<td>221</td>
<td>0.0845</td>
<td>0.0845</td>
</tr>
<tr>
<td>222</td>
<td>0.3226</td>
<td>0.3226</td>
</tr>
<tr>
<td>223</td>
<td>0.1210</td>
<td>0.1210</td>
</tr>
</tbody>
</table>

164
7.3.7.9.2 Native and Riparian Vegetation Area Data File

Areas of native and riparian vegetation at every element are listed in this file:

FACTLNVRV Conversion factor for land use areas; enter 0.0 if land use distribution
 is given as a fraction of element area

NSPLNVRV Number of time steps to update the land use data; enter any number if
 time-tracking option is on

NFQLNVRV Repetition frequency of the land use data; a value of zero indicates that
 a full time series data set is supplied; if time tracking simulation, enter
 any number

DSSFL The name of the DSS file for data input; leave blank if DSS file is not
 used for data input

Data Input from Native and Riparian Vegetation Area Data File

If the time series data is listed in the Native and Riparian Vegetation Area Data File,
then the following variables need to be populated. Otherwise, these variables should be
commented out using “C”, “c” or “*”, and the variables in the “Data Input from DSS File”
section below should be populated.

ITLN Time. For time tracking simulations use MM/DD/YYYY_hh:mm
 format, for non-time tracking simulations enter an integer number.

IE Element identification number

ALANDNV Native vegetation area (or fraction of area) over element IE; [L²] or
 [L²/L²] based on FACTLNVRV above
ALANDRV Riparian vegetation area (or fraction of area) over element IE; $[L^2]$ or $[L^2/L^2]$ based on FACTLNVRV above

Data Input from DSS File

If time series data is stored in a DSS file then the following variables should be populated:

- **IE** Element identification number
- **LUTYPE** Land-use type entered sequentially (1 = native vegetation, 2 = riparian vegetation)
- **PATH** Pathname corresponding to element and land-use type combination
INTEGRATED WATER FLOW MODEL (IWFN)
*** Version ***

NATIVE AND RIPARIAN VEGETATION AREA FILE
FOOT ZONE COMPONENT

Project: IWFN Version Release
California Department of Water Resources
Filename: MAVVArea.dat

File Description
This data file contains the land use distribution of native and riparian vegetation
for each element for the simulation period.

Land Use Data Specifications

FACTLNURV: Conversion factor for land use area
 * Enter 0,8 if land use distribution is given as a fraction of element area
 * Enter any number if time-tracking option is on
NPSLNURV: Number of time steps to update the land use data
 * Enter any number if time-tracking option is on
NFQLNURV: Repetition frequency of the land use data
 * Enter 0 if full time series data is supplied
DSFL: The name of the DS file for data input
 * Leave blank if DS file is not used for data input

VALUE DESCRIPTION
10.762010447 / FACTLNURV (sq. m. -> sq. ft.)
1 / NPSLNURV
0 / NFQLNURV
/ DSFL

Land Use Data

(PREDA FROM THIS FILE)
List the land use data below, if it will not be read from a DS file
(i.e. DSFL is left blank above).

ITLN: Time period
IE: Element number
ALANDRV: Native vegetation area (or fraction of area) over an element;
[L-2] or [L-2/T-2] (based on FACTLNURV above)
ALANDRV: Riparian vegetation area (or fraction of area) over an element;
[L-2] or [L-2/T-2] (based on FACTLNURV above)
 * Note: Areas over elements that are designated as lake elements
 will be ignored

ALANDRV

<table>
<thead>
<tr>
<th>Date</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/1993</td>
<td>964286.26</td>
</tr>
<tr>
<td>1</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>0.0001</td>
</tr>
<tr>
<td>3</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>0.0001</td>
</tr>
<tr>
<td>5</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>119</td>
<td>129174.52</td>
</tr>
<tr>
<td>220</td>
<td>130975.26</td>
</tr>
<tr>
<td>222</td>
<td>108019.08</td>
</tr>
<tr>
<td>223</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Pathnames for Land Use Data

(PREAD FROM DS3 FILE)
List the pathnames for the land use data below, if it will be read from a DS3 file
(i.e. DS3FL is specified above).
The pathnames should be listed for each element and native and riparian vegetation combination.
They should be listed in an order such that, the land use type changes first.

Example:

<table>
<thead>
<tr>
<th>IE</th>
<th>LUTYPE</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>pathname[1]</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>pathname[2]</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>pathname[3]</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>pathname[4]</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>pathname[2*IE - 1]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>pathname[2*IE]</td>
</tr>
</tbody>
</table>

IE: Element number
LUTYPE: Land use type
1 = Native veg.
2 = Riparian veg.
PATH: Pathname corresponding to element and land use type combination
7.4 Output Files

IDC produces several optional output files. In the Root Zone Component Main File, the user can specify file names to which soil moisture as well as land and water use budgets are printed for 4 main land-use types at each subregion. These files are created in binary format for run-time efficiency and to save computer storage space. A post-processing tool, Budget, which is available for download from the IDC web site and discussed later in this document is required to process these binary files and create tables in ASCII text file format.

Optionally, IDC can generate an end-of-simulation moisture content output file that is already in ASCII text format. This file lists soil moisture for each land-use type at each element. The name for this file is specified in the Root Zone Parameter File. First, soil moisture content for non-ponded crops is printed, then those for ponded-crops and urban are printed. Finally, moisture contents for native and riparian vegetations are displayed.

The soil moisture and land and water use budget files specified in the Root Zone Parameter File stores information for 4 main land-use types at each subregion. Budget information for individual non-ponded or ponded crops are not stored in these files. Optionally, IDC can generate budget files for specific non-ponded and ponded crops at each subregion. This can be achieved by specifying crop codes and output file names in non-ponded and ponded parameter files. As mentioned earlier, the generated files will be in native binary format and the user will need Budget post-processor to process these files and generate tables in ASCII text format. The usage of Budget post-processor is explained briefly later in this document and in *IWFM v4.0 User’s Manual* in more detail.

In the following sections, a detailed explanation of the budget tables that are produced by IDC and post-processed by the Budget post-processor is given.
7.4.1 Subregional Land and Water Use Budget

The subregional land and water use budget binary file is generated by specifying a proper filename in the Root Zone Component Main File. A budget table is produced for each subregion listed for the LPRNT variable in the Budget Main Input File. The title printed for each subregional land and water use budget includes IWFM version number, subregion name given by the user, the unit of data columns and the area of the subregion. All land and water use budget columns are in volumetric units except Time, Agricultural Area and Urban Area. The output units and conversion factors for area (UNITAROU and FACTAROU) and volume (UNITVLOU and FACTVLOU) are specified by the user in the Budget Main Input File.

The total agricultural and urban areas, as well as the agricultural potential consumptive use of applied water and the water supply requirements are reported in the output, followed by the components that the land and water use budget is comprised of. For agricultural lands, potential consumptive use is the amount of water needed to bring the soil moisture up to the irrigation target moisture (field capacity, by default) after the effects of precipitation and generic moisture sources, excluding the net return flow, are taken into account. The agricultural supply requirement is the potential consumptive use of applied water plus the net return flow.

A positive or negative sign is given for each column that is a component of the subregional land and water use. The Shortage column is the resulting balance, based on water use components. A value of zero in this column indicates that the available water supply (surface water diversions, groundwater pumping and surface runoff from upstream elements) meets the agricultural or urban supply requirements. A positive value indicates
that the supply is not a large enough quantity to satisfy water requirements. Conversely, a negative value in the Shortage column signifies a water supply surplus. The last three columns for agricultural areas are informational and show the sources of water that are used in meeting the crop evapotranspirative requirement.

The following table defines each column in the subregional land and water use budget table printed out to a text file:

<table>
<thead>
<tr>
<th>COL. #</th>
<th>COLUMN NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time</td>
<td>Time step</td>
</tr>
<tr>
<td></td>
<td>Agricultural Area</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Area</td>
<td>Agricultural area</td>
</tr>
<tr>
<td>3</td>
<td>Potential CUAW</td>
<td>Applied water needed to increase the soil moisture to irrigation target moisture before taking into account the net return flow</td>
</tr>
<tr>
<td>4</td>
<td>Agricultural Supply Requirement</td>
<td>If agricultural water demands are computed internally, this is the total amount of applied water needed to increase the soil moisture to irrigation target moisture plus the net return flow. If agricultural water demands are specified, then this term equals the pre-specified water demand.</td>
</tr>
<tr>
<td>5</td>
<td>Pumping (−)</td>
<td>Portion of groundwater pumping that is used to meet the agricultural supply requirement</td>
</tr>
<tr>
<td>6</td>
<td>Diversion (−)</td>
<td>Portion of the stream diversions that is used to meet the agricultural supply requirement</td>
</tr>
<tr>
<td>7</td>
<td>Inflow as Srfc. Runoff (−)</td>
<td>Surface runoff (combination of rainfall runoff, and agricultural and urban return flow) from upstream elements and subregions that is captured and used to meet part of the agricultural supply requirement</td>
</tr>
<tr>
<td>8</td>
<td>Shortage (=)</td>
<td>Resulting water balance with respect to the agricultural supply requirements and actual water supply specified in preceding columns</td>
</tr>
<tr>
<td>9</td>
<td>ETAW</td>
<td>Amount of crop evapotranspiration that is met by applied water (summation of pumping, diversions and captured surface runoff from upstream elements) through current and previous irrigation events</td>
</tr>
</tbody>
</table>
Effective Precip: Amount of crop evapotranspiration that is met by current and previous precipitation events

ET from Other Sources: Amount of crop evapotranspiration that is met by generic water sources (e.g. lateral seepage, fog)

Urban Area

12. Area: Urban area

13. Urban Supply Requirement: Sum of indoor and outdoor urban water demand

14. Pumping (−): Portion of groundwater pumping that is used to meet the urban supply requirement

15. Diversion (−): Portion of stream diversions that is used to meet the urban supply requirement

16. Inflow as Srfc. Runoff (−): Surface runoff (combination of rainfall runoff, and agricultural and urban return flow) from upstream elements and subregions that is captured and used to meet part of the urban supply requirement

17. Shortage (=): Resulting water balance with respect to the urban supply requirements and actual water supply specified in preceding columns

If a DSS file is used for print-out, the following pathnames are used:

Part A:

IWFM_L&W_USE_BUD

Part B:

TTT (SR**XXX**) where **TTT** is the name of the subregion and **XXX** is the subregion number

Part C:

One of the following, depending on the output data:

i. **AREA**

ii. **VOLUME**

Part D:

Start date of the time series depending on the values of the BDT and EDT
variables (starting and ending date and time of budget print-out)

Part E:

Print-out interval for the subregional land and water use budget as specified in the
Budget Main Input File

Part F:

One of the following, depending on the output data (refer to the table above for
further details):

i. AG_AREA (corresponds to column 2 in text output file)

ii. AG_POTNL_CUAW (corresponds to column 3 in text output file)

iii. AG_SUP_REQ (corresponds to column 4 in text output file)

iv. $AG_PUMPING$ (corresponds to column 5 in text output file)

v. AG_DIVER (corresponds to column 6 in text output file)

vi. AG_SR_INFLOW (corresponds to column 7 in text output file)

vii. $AG_SHORTAGE$ (corresponds to column 8 in text output file)

viii. AG_ETAW (corresponds to column 19 in text output file)

ix. AG_EFF_PREcip (corresponds to column 10 in text output file)

x. AG_ET_OTH (corresponds to column 11 in text output file)

xi. URB_AREA (corresponds to column 12 in text output file)

xii. URB_SUP_REQ (corresponds to column 13 in text output file)

xiii. $URB_PUMPING$ (corresponds to column 14 in text output file)

xiv. URB_DIVER (corresponds to column 15 in text output file)

xv. URB_SR_INFLOW (corresponds to column 16 in text output file)

xvi. $URB_SHORTAGE$ (corresponds to column 17 in text output file)
7.4.2 Crop-Specific Land and Water Use Budget

The crop-specific land and water use budget binary files are generated by specifying the individual crops and proper filenames in the non-ponded and ponded crops section of the Root Zone Component Main File.

A budget table is produced for each subregion and crop combination listed for the LPRNT variable in the Budget Main Input File. The indices for subregion and crop combinations are arranged in the Root Zone Component such that crops are listed first and subregions second. For instance, if 5 non-ponded crops are specified for crop-specific land and water use budget binary output in a model with 2 subregions, indices 1 through 5 represent crops 1 through 5 in subregion 1, indices 6 through 10 represent crops 1 through 5 in subregion 2, and indices 11 through 15 represent crops 1 through 5 in the entire model domain. So, if LPRNT variable is set to \{1, 7, 9\}, budget tables for crop 1 in subregion 1 (index 1), crop 2 in subregion 2 (index 7) and crop 4 in subregion 2 (index 9) will be printed.

The generated budget table is similar to that generated for the subregional land and water use budget except that there is no information for urban lands. The title printed for each crop-specific land and water use budget includes IWFM version number, subregion name given by the user, the crop code, the unit of data columns and the area of the subregion. All land and water use budget columns are in volumetric units except *Time and Area*. The output units and conversion factors for area (UNITAROU and FACTAROU) and volume (UNITVLOU and FACTVLOU) are specified by the user in the Budget Main Input File.

The crop area, potential consumptive use of applied water and the supply requirement are reported in the output, followed by the components that the crop-specific land and water use budget is comprised of. A positive or negative sign is given for each column that is a
component of the crop-specific land and water use. The *Shortage* column is the resulting balance, based on water use components. A value of zero in this column indicates that the available water supply (surface water diversions, groundwater pumping and surface runoff from upstream elements) meets the agricultural or urban supply requirements. A positive value indicates that the supply is not a large enough quantity to satisfy water requirements. Conversely, a negative value in the *Shortage* column signifies a water supply surplus. The last three columns are informational and show the sources of water that are used in meeting the crop evapotranspirative requirement. The following table defines each column in the crop-specific land and water use budget table printed out to a text file:

<table>
<thead>
<tr>
<th>CROP-SPECIFIC LAND AND WATER USE BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL. #</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

If a DSS file is used for print-out, the following pathnames are used:

Part A:

IWFM_L&W_USE_BUD

Part B:

TTT (SRXXX) YY where TTT is the name of the subregion, XXX is the subregion number and YY is the user-specified crop code

Part C:

One of the following, depending on the output data:

- iii. AREA
- iv. VOLUME

Part D:

Start date of the time series depending on the values of the BDT and EDT variables (starting and ending date and time of budget print-out)

Part E:

Print-out interval for the crop-specific land and water use budget as specified in the Budget Main Input File
Part F:

One of the following, depending on the output data (refer to the table above for further details):

xvii. *AREA* (corresponds to column 2 in text output file)

xviii. *POTNL_CUAW* (corresponds to column 3 in text output file)

xix. *SUP_REQ* (corresponds to column 4 in text output file)

xx. *PUMPING* (corresponds to column 5 in text output file)

xxi. *DIVER* (corresponds to column 6 in text output file)

xxii. *SR_INFLOW* (corresponds to column 7 in text output file)

xxiii. *SHORTAGE* (corresponds to column 8 in text output file)

xxiv. *ETAW* (corresponds to column 9 in text output file)

xxv. *EFF_PRECIP* (corresponds to column 10 in text output file)

xxvi. *ET_OTH* (corresponds to column 11 in text output file)

7.4.3 **Subregional Root Zone Moisture Budget**

The subregional root zone moisture budget is produced for each subregion listed for processing in the Budget Main Input File. The title printed for each subregional root zone moisture budget includes IWF M version number, subregion name given by the user, the unit of data columns and the area of the subregion. The output units are specified by the user in the Budget Main Input File.

The root zone moisture budget provides information on processes that are used to compute soil moisture in the root zone. Agricultural areas represent the areas where crops are located. Urban area includes indoor and outdoor urban areas and the native and riparian lands represent the undeveloped area in the subregion. For each area type (agricultural,
urban, and native and riparian vegetation) precipitation and irrigation (except for native and riparian vegetation areas) along with direct runoff and return flows are listed. The *Infiltration* column is computed by adding the *Precipitation*, *Prime Applied Water* and *Inflow as Surface Runoff* columns and subtracting the *Runoff* and *Net Return Flow* columns. The following table describes the columns in the subregional root zone moisture budget when printed out to a text file:

SUBREGIONAL ROOT ZONE MOISTURE BUDGET

<table>
<thead>
<tr>
<th>COL. #</th>
<th>COLUMN NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time</td>
<td>Time step</td>
</tr>
<tr>
<td>2</td>
<td>Agricultural Area</td>
<td>Agricultural area</td>
</tr>
<tr>
<td>3</td>
<td>Precipitation</td>
<td>Precipitation that falls on agricultural lands</td>
</tr>
<tr>
<td>4</td>
<td>Runoff</td>
<td>Direct runoff of precipitation that falls on agricultural lands</td>
</tr>
<tr>
<td>5</td>
<td>Prime Applied Water</td>
<td>Amount of water applied as a summation of diversions and pumping for irrigation purposes</td>
</tr>
<tr>
<td>6</td>
<td>Inflow as Surface Runoff</td>
<td>Surface runoff (sum of rainfall runoff and return flow from agricultural and urban lands) from upstream elements and subregions that is captured and used for irrigation purposes</td>
</tr>
<tr>
<td>7</td>
<td>Reused Water</td>
<td>Amount of return flow that is captured and re-used for irrigation</td>
</tr>
<tr>
<td>8</td>
<td>Net Return Flow</td>
<td>Net return flow of irrigation on agricultural lands (after re-use)</td>
</tr>
<tr>
<td>9</td>
<td>Beginning Storage (+)</td>
<td>Root zone moisture in agricultural lands at the beginning of time step</td>
</tr>
<tr>
<td>10</td>
<td>Net Gain from Land Expansion (+)</td>
<td>The net moisture gained from other land use areas as the area of agricultural lands increase (a negative value represents loss of moisture due to the decrease of agricultural area)</td>
</tr>
<tr>
<td></td>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Infiltration (+)</td>
<td>Total infiltration on the agricultural lands; computed as the summation of precipitation, prime applied water and inflow as surface runoff less runoff and net return flow</td>
</tr>
<tr>
<td>12</td>
<td>Other Inflow (+)</td>
<td>Moisture inflow from other generic moisture sources such as lateral seepage</td>
</tr>
<tr>
<td>13</td>
<td>Pond Drain (−)</td>
<td>Drainage of rice and refuge ponds</td>
</tr>
<tr>
<td>14</td>
<td>Actual ET (−)</td>
<td>Actual evapotranspiration in agricultural lands</td>
</tr>
<tr>
<td>15</td>
<td>Deep Percolation (−)</td>
<td>Deep percolation from the root zone which is the vertical moisture outflow from the bottom of the root zone in agricultural areas</td>
</tr>
<tr>
<td>16</td>
<td>Ending Storage (−)</td>
<td>Root zone moisture in agricultural lands at the end of the time step computed as the summation of the beginning storage and the net inflow into the root zone</td>
</tr>
<tr>
<td>17</td>
<td>Discrepancy (=)</td>
<td>Mass balance error check for the moisture storage in the root zone of agricultural lands</td>
</tr>
<tr>
<td></td>
<td>Urban Area</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Area</td>
<td>Urban area</td>
</tr>
<tr>
<td>19</td>
<td>Precipitation</td>
<td>Precipitation that falls on urban lands</td>
</tr>
<tr>
<td>20</td>
<td>Runoff</td>
<td>Direct runoff of precipitation that falls on urban lands</td>
</tr>
<tr>
<td>21</td>
<td>Prime Applied Water</td>
<td>Total amount of pumping and diversions that is used to meet urban indoors and outdoors water demand</td>
</tr>
<tr>
<td>22</td>
<td>Inflow as Surface Runoff</td>
<td>Surface runoff (sum of rainfall runoff and return flow from agricultural and urban lands) from upstream elements and subregions that is captured and used to meet urban water demand</td>
</tr>
<tr>
<td>23</td>
<td>Reused Water</td>
<td>The amount of return flow that is captured and re-used on urban lands</td>
</tr>
<tr>
<td>24</td>
<td>Net Return Flow</td>
<td>Net return flow of applied water used for urban indoors and outdoors usage (after re-use)</td>
</tr>
<tr>
<td>25</td>
<td>Beginning Storage (+)</td>
<td>Root zone moisture at the beginning of time step</td>
</tr>
<tr>
<td>26</td>
<td>Net Gain from Land Expansion (+)</td>
<td>The net moisture gained from other land use areas as the area of urban lands increase (a negative value represents loss of moisture due to the decrease of urban area)</td>
</tr>
</tbody>
</table>
27 **Infiltration (+)**
Total infiltration on the urban lands computed as the summation of precipitation, prime applied water and inflow as surface runoff less runoff and net return flow.

28 **Other Inflow (+)**
Moisture inflow from other generic moisture sources such as lateral seepage.

29 **Actual ET (−)**
Actual evapotranspiration in urban lands.

30 **Deep Percolation (−)**
Deep percolation from the root zone which is the vertical moisture outflow from the bottom of the root zone in urban areas.

31 **Ending Storage (−)**
Root zone moisture in urban lands at the end of the time step computed as the summation of the beginning storage and the net inflow into the root zone.

32 **Discrepancy (=)**
Mass balance error check for the moisture storage in the root zone of urban lands.

Native & Riparian Vegetation Area

33 **Area**
Native and riparian vegetation area.

34 **Precipitation**
Precipitation that falls on areas with native and riparian vegetation.

35 **Inflow as Surface Runoff**
Surface runoff (sum of rainfall runoff and return flow from agricultural and urban lands) from upstream elements and subregions that flows into the lands with native and riparian vegetation.

36 **Runoff**
Direct runoff of precipitation that falls on areas with native and riparian vegetation.

37 **Beginning Storage (+)**
Root zone moisture in areas with native and riparian vegetation at the beginning of time step.

38 **Net Gain from Land Expansion (+)**
The net moisture gained from other land use areas as the area of native and riparian vegetation increase (a negative value represents loss of moisture due to the decrease of native and riparian vegetation area).

39 **Infiltration (+)**
Total infiltration on areas with native and riparian vegetation; computed as the sum of precipitation and inflow as surface runoff less runoff.

40 **Other Inflow (+)**
Moisture inflow from other generic moisture sources such as lateral seepage.

41 **Actual ET (−)**
Actual evapotranspiration in areas with native and riparian vegetation.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Deep Percolation (−)</td>
<td>Deep percolation from the root zone which is the vertical moisture outflow from the bottom of the root zone in areas with native and riparian vegetation</td>
</tr>
<tr>
<td>43</td>
<td>Ending Storage (+)</td>
<td>Root zone moisture in areas with native and riparian vegetation at the end of the time step; computed as the summation of the beginning storage and the net moisture inflow</td>
</tr>
<tr>
<td>44</td>
<td>Discrepancy (=)</td>
<td>Mass balance error check for the moisture storage in the root zone of lands with native and riparian vegetation</td>
</tr>
</tbody>
</table>

If a DSS file is used for print-out, the following pathnames are used:

Part A:

`IWFM_ROOTZN_BUD`

Part B:

`TTT (SRXXX)` where `TTT` is the name of the subregion and `XXX` is the subregion number

Part C:

One of the following, depending on the output data:

1. `AREA`
2. `VOLUME`

Part D:

Start date of the time series depending on the values of the BDT and EDT variables (starting and ending date and time of budget print-out)

Part E:

Print-out interval for the subregional root zone moisture budget as specified in the Budget Main Input File
Part F:

One of the following, depending on the output data (refer to the table above for further details):

i. \textit{AG_AREA} (corresponds to column 2 in text output file)

ii. \textit{AG_PRECIP} (corresponds to column 3 in text output file)

iii. \textit{AG_RUNOFF} (corresponds to column 4 in text output file)

iv. \textit{AG_PRM_H2O} (corresponds to column 5 in text output file)

v. \textit{AG_SR_INFLOW} (corresponds to column 6 in text output file)

vi. \textit{AG_RE_USE} (corresponds to column 7 in text output file)

vii. \textit{AG_NT_RTRN_FLOW} (corresponds to column 8 in text output file)

viii. \textit{AG_BEGIN_STOR} (corresponds to column 9 in text output file)

ix. \textit{AG_GAIN_EXP} (corresponds to column 10 in text output file)

x. \textit{AG_INFILTR} (corresponds to column 11 in text output file)

xi. \textit{AG_OTHER_INFLOW} (corresponds to column 12 in text output file)

xii. \textit{AG_DRAIN} (corresponds to column 13 in text output file)

xiii. \textit{AG_ET} (corresponds to column 14 in text output file)

xiv. \textit{AG_DEEP_PERC} (corresponds to column 15 in text output file)

xv. \textit{AG_END_STOR} (corresponds to column 16 in text output file)

xvi. \textit{AG_DISCREPANCY} (corresponds to column 17 in text output file)

xvii. \textit{URB_AREA} (corresponds to column 18 in text output file)

xviii. \textit{URB_PRECIP} (corresponds to column 19 in text output file)

xix. \textit{URB_RUNOFF} (corresponds to column 20 in text output file)
xx. URB_PRM_H2O (corresponds to column 21 in text output file)
xxi. URB_SR_INFLOW (corresponds to column 22 in text output file)
xxii. URB_RE_USE (corresponds to column 23 in text output file)
xxiii. $URB_NT_RTRN_FLOW$ (corresponds to column 24 in text output file)
xxiv. URB_BEGIN_STOR (corresponds to column 25 in text output file)
xxv. URB_GAIN_EXP (corresponds to column 26 in text output file)
xxvi. $URB_INFILTR$ (corresponds to column 27 in text output file)
xxvii. URB_OTHER_INFLOW (corresponds to column 28 in text output file)
xxviii. URB_ET (corresponds to column 29 in text output file)
xxix. URB_DEEP_PERC (corresponds to column 30 in text output file)
xxx. URB_END_STOR (corresponds to column 31 in text output file)
xxxi. $URB_DISCREPANCY$ (corresponds to column 32 in text output file)
xxxii. NRV_AREA (corresponds to column 33 in text output file)
xxxiii. NRV_PRECIP (corresponds to column 34 in text output file)
xxxiv. NRV_SR_INFLOW (corresponds to column 35 in text output file)
xxxv. NRV_RUNOFF (corresponds to column 36 in text output file)
xxxvi. NRV_BEGIN_STOR (corresponds to column 37 in text output file)
xxxvii. NRV_GAIN_EXP (corresponds to column 38 in text output file)
xxxviii. $NRV_INFILTR$ (corresponds to column 39 in text output file)
xxxix. *NRV_OTHER_INFLOW* (corresponds to column 40 in text output file)

xl. *NRV_ET* (corresponds to column 41 in text output file)

xli. *NRV_DEEP_PERC* (corresponds to column 42 in text output file)

xlii. *NRV_END_STOR* (corresponds to column 43 in text output file)

xliii. *NRV_DISCREPANCY* (corresponds to column 44 in text output file)

7.4.4 Crop-Specific Root Zone Moisture Budget

The crop-specific root zone moisture budget binary files are generated by specifying the individual crops and proper filenames in the non-ponded and ponded crops section of the Root Zone Component Main File.

A budget table is produced for each subregion and crop combination listed for the LPRNT variable in the Budget Main Input File. The indices for subregion and crop combinations are arranged in the Root Zone Component such that crops are listed first and subregions second. For instance, if 5 non-ponded crops are specified for crop-specific root zone moisture budget binary output in a model with 2 subregions, indices 1 through 5 represent crops 1 through 5 in subregion 1, indices 6 through 10 represent crops 1 through 5 in subregion 2, and indices 11 through 15 represent crops 1 through 5 in the entire model domain. So, if LPRNT variable is set to \{1, 7, 9\}, budget tables for crop 1 in subregion 1 (index 1), crop 2 in subregion 2 (index 7) and crop 4 in subregion 2 (index 9) will be printed.

The generated budget table is similar to that generated for the subregional root zone moisture budget except that there is no information for urban lands, and areas with native and riparian vegetation. The title printed for each crop-specific root zone moisture budget
includes IWFM version number, subregion name given by the user, the crop code, the unit of data columns and the area of the subregion.

The following table describes the columns in the crop-specific root zone moisture budget when printed out to a text file:

<table>
<thead>
<tr>
<th>COL. #</th>
<th>COLUMN NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time</td>
<td>Time step</td>
</tr>
<tr>
<td>2</td>
<td>Area</td>
<td>Crop area</td>
</tr>
<tr>
<td>3</td>
<td>Precipitation</td>
<td>Precipitation that falls on areas with the specified crop</td>
</tr>
<tr>
<td>4</td>
<td>Runoff</td>
<td>Direct runoff of precipitation that falls on areas with the specified crop</td>
</tr>
<tr>
<td>5</td>
<td>Prime Applied Water</td>
<td>Amount of water applied as a summation of diversions and pumping for irrigation purposes</td>
</tr>
<tr>
<td>6</td>
<td>Inflow as Surface Runoff</td>
<td>Surface runoff (sum of rainfall runoff and return flow from agricultural and urban lands) from upstream elements and subregions that is captured and used for irrigation purposes</td>
</tr>
<tr>
<td>7</td>
<td>Reused Water</td>
<td>Amount of return flow that is captured and re-used for irrigation</td>
</tr>
<tr>
<td>8</td>
<td>Net Return Flow</td>
<td>Net return flow of irrigation on areas with the specified crop (after re-use)</td>
</tr>
<tr>
<td>9</td>
<td>Beginning Storage (+)</td>
<td>Root zone moisture in areas with the specified crop at the beginning of time step</td>
</tr>
<tr>
<td>10</td>
<td>Net Gain from Land Expansion (+)</td>
<td>The net moisture gained from other land use areas as the area of the specified crop increases (a negative value represents loss of moisture due to the decrease of the crop area)</td>
</tr>
<tr>
<td>11</td>
<td>Infiltration (+)</td>
<td>Total infiltration on areas with the specified crop; computed as the summation of precipitation, prime applied water and inflow as surface runoff less runoff and net return flow</td>
</tr>
<tr>
<td>12</td>
<td>Other Inflow (+)</td>
<td>Moisture inflow from other generic moisture sources such as lateral seepage</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>Pond Drain (−)</td>
<td>Drainage of rice and refuge ponds; this column is non-zero only if the specified crop is a ponded crop</td>
</tr>
<tr>
<td>14</td>
<td>Actual ET (−)</td>
<td>Actual evapotranspiration of the specified crop</td>
</tr>
<tr>
<td>15</td>
<td>Deep Percolation (−)</td>
<td>Deep percolation from the root zone which is the vertical moisture outflow from the bottom of the crop root zone</td>
</tr>
<tr>
<td>16</td>
<td>Ending Storage (−)</td>
<td>Root zone moisture in areas with the specified crop at the end of the time step computed as the summation of the beginning storage and the net inflow into the root zone</td>
</tr>
<tr>
<td>17</td>
<td>Discrepancy (=)</td>
<td>Mass balance error check for the moisture storage in the root zone of the specified crop</td>
</tr>
</tbody>
</table>

If a DSS file is used for print-out, the following pathnames are used:

Part A:

IWFM_ROOTZN_BUD

Part B:

TTT (SRXXX)_YY where TTT is the name of the subregion, XXX is the subregion number and YY is the crop code specified by the user

Part C:

One of the following, depending on the output data:

iii. AREA

iv. VOLUME

Part D:

Start date of the time series depending on the values of the BDT and EDT variables (starting and ending date and time of budget print-out)

Part E:

Print-out interval for the crop-specific root zone moisture budget as specified in
the Budget Main Input File

Part F:

One of the following, depending on the output data (refer to the table above for further details):

i. *AREA* (corresponds to column 2 in text output file)

ii. *PRECIP* (corresponds to column 3 in text output file)

iii. *RUNOFF* (corresponds to column 4 in text output file)

iv. *PRM_H2O* (corresponds to column 5 in text output file)

v. *SR-INFLOW* (corresponds to column 6 in text output file)

vi. *RE-USE* (corresponds to column 7 in text output file)

vii. *NT_RTRN_FLOW* (corresponds to column 8 in text output file)

viii. *BEGIN_STOR* (corresponds to column 9 in text output file)

ix. *GAIN_EXP* (corresponds to column 10 in text output file)

x. *INFILTR* (corresponds to column 11 in text output file)

xi. *OTHER_INFLOW* (corresponds to column 12 in text output file)

xii. *DRAIN* (corresponds to column 13 in text output file)

xiii. *ET* (corresponds to column 14 in text output file)

xiv. *DEEP_PERC* (corresponds to column 15 in text output file)

xv. *END_STOR* (corresponds to column 16 in text output file)

xvi. *DISCREPANCY* (corresponds to column 17 in text output file)

7.5 **Budget Post-Processor**

IDC prints out its results into binary files to decrease the computer run times as well as the size of the output files. The information in these binary files cannot be displayed
directly; instead, they need to be processed to generate understandable information in a table format. The Budget post-processor is created for this purpose and it is available for download from the IDC’s web site at http://baydeltaoffice.water.ca.gov/modeling/hydrology/IWFM/IDC/index_IDC.cfm.

Budget post-processor can process multiple binary files at the same time. The user specifies the number of binary files to be processed, the names of the binary files and the output files where the processed results will be printed out.

For each binary file to be processed the user can choose the “locations” for which the IDC results will be listed in a tabulated form. A location can either be a subregion or a set of specified land-uses at a subregion. For instance, the user can specify names for root zone moisture, and land and water use budget files in the Root Zone Parameter File (Figure 17). For these files, a location is a subregion. If the model has 20 subregions, then the user can choose in the Budget post-processor to process these two binary files and generate tabulated data for all or some of the subregions.

Similar output file names can also be specified for non-ponded and ponded crops as well as urban, native vegetation and riparian vegetation lands. In this case, a location will be a land-use and subregion combination. For instance, if the user chooses to generate binary soil moisture budget file for 4 crops (e.g. grain, alfalfa, corn and sugar beets), the first location for the processed and tabulated data will be grain in the first subregion, second location will be alfalfa in the first subregion, third location will be corn in the first subregion, etc. Fifth location will be grain in the second subregion.

By using the output features of IDC and Budget post-processor the user can obtain detailed land and water use as well as soil moisture budgets for total agriculture, urban, and
native and riparian vegetation lands as well as for specific crops in each subregion.

7.6 Linking IDC to Other Models

The source code of IDC has been compiled into a dynamic link library (DLL) and the procedures necessary to link IDC to other models have been exported. The models that are using IDC need to be linked to the IDC DLL.

When IDC is linked to other models it still requires the same input data files that are utilized when IDC is used as a stand-alone model. This means that some information that is used by the linking model may need to be re-structured in a format that IDC expects. For instance, the linking model may already be using precipitation data for other processes it simulates. Since IDC also requires precipitation as input the same or additional precipitation data needs to be re-structured into the format that IDC expects. Another information that needs to be redefined in a format that IDC requires is the configuration of the computational grid. If the linking model utilizes a finite-element grid, it is likely that the format of the grid configuration data for the linking model is in a different format than IDC requires. In this case, the grid configuration needs to be redefined in the format that IDC expects to read. Similarly, if the linking model utilizes a finite-difference grid, the grid configuration should be redefined as if it is a finite-element grid in the format that IDC expects.

To successfully link IDC to other models, the modeler needs to know the interfaces to the exported procedures in the IDC DLL. Next, the exported procedures and their interfaces are given.
7.6.1 Procedure Interfaces

7.6.1.1 IDC_GetMainControlData

Given the name of the Main Control Data File, this procedure reads information stored in this file and initializes the simulation time period.

FUNCTION IDC_GetMainControlData(LenFileName,MainFileName) RESULT(iStat)
 INTEGER,INTENT(IN) :: LenFileName
 CHARACTER(LEN=LenFileName),INTENT(IN) :: MainFileName
 INTEGER :: iStat
END FUNCTION IDC_GetMainControlData

LenFileName : Length of the name for the Main Control Data file.
MainFileName : Name of the Main Control Data File

7.6.1.2 IDC_InitApp

Using the information included in the data files that are listed in the Main Control Data File, this procedure instantiates the simulation grid, precipitation, evapotranspiration and root zone components for the simulation.

FUNCTION IDC_InitApp() RESULT(iStat)
 INTEGER :: iStat
END FUNCTION IDC_InitApp

iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.3 IDC_AdvanceTime

This procedure advances the time step for IDC and generates the new time stamp using the length of time step specified in the Main Control Data File. The new time stamp is used to read locate and read data from the time-series input data files.

FUNCTION IDC_AdvanceTime() RESULT(iStat)
 INTEGER :: iStat
END FUNCTION IDC_AdvanceTime

iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.4 IDC_GetTimeSeriesData

This procedure reads data from time-series input files for the corresponding time step in the simulation.

```fortran
FUNCTION IDC_GetTimeSeriesData() RESULT(iStat)
    INTEGER :: iStat
END FUNCTION IDC_GetTimeSeriesData
```

iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.5 IDC_ComputeWaterDemand

This procedure computes applied water demand for ponded and non-ponded agricultural crops as well as for urban areas.

```fortran
FUNCTION IDC_ComputeWaterDemand() RESULT(iStat)
    INTEGER :: iStat
END FUNCTION IDC_ComputeWaterDemand
```

iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.6 IDC_ZeroSupply

This procedure resets the water supply to each element.

```fortran
FUNCTION IDC_ZeroSupply() RESULT(iStat)
    INTEGER :: iStat
END FUNCTION IDC_ZeroSupply
```
iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.7 IDC_SetSupplyToElem

This procedure sets the water supply to each element or to each subregion. The source of water supply can be either stream diversions or groundwater pumping. Water supply can be assigned to each element or to each subregion. If the supply is assigned to each subregion than IDC distributes the subregional water supply to individual elements in proportion to the water demand at each element in the subregion. This procedure can be called multiple times to represent a mixture of pumping and diversions to elements or subregions. When the procedure is called multiple times, IDC accumulates supplies to elements.

FUNCTION IDC_SetSupplyToElem(NSupply,Supply,SupplyType,Dest,DestType) **RESULT**(iStat)

- **INTEGER,INTENT**(IN) :: NSupply,SupplyType
- **INTEGER,INTENT**(IN) :: Dest(NSupply),DestType(NSupply)
- **REAL(8),INTENT**(IN) :: Supply(NSupply)
- **INTEGER** :: iStat

END FUNCTION IDC_SetSupplyToElem

NSupply : Number of water supplies specified.

Supply : Water supply amounts to each element or subregion.

SupplyType : Enter 1 if source of water supply is diversions; enter 2 if the source is groundwater pumping.

Dest : Water supply destination identification number. If the supply is assigned to elements then Dest should list the element identification numbers, if supply is assigned to subregions then Dest should include subregion identification numbers.
DestType : Water supply destination type. If the water supply is assigned to elements, then enter 2; if it is assigned to subregions then enter 4.

7.6.1.8 IDC_Simulate

This procedure computes the root zone and land surface flow processes.

FUNCTION IDC_Simulate() RESULT(iStat)
 INTEGER :: iStat
END FUNCTION IDC_Simulate

iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.9 IDC_PrintResults

This procedure prints out the results to the output files specified by the user. To speed up the computer run-times, IDC stores the values to be printed in cache whose size is defined by the user in the Main Control Data File. When cache is full, the values are flushed to the output files. To trigger the flushing of the values to the output files at the end of the simulation even when the cache is not full, this procedure requires the user to specify if it is the end of simulation or not.

FUNCTION IDC_PrintResults(iEndOfSimulation) RESULT(iStat)
 INTEGER,INTENT(IN) :: iEndOfSimulation
 INTEGER :: iStat
END FUNCTION IDC_PrintResults

iEndOfSimulation : If it is the last time step of the simulation, enter 1. Otherwise enter 0.
iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.10 IDC_AdvanceState

193
This procedure advances the state of the root zone in time. The flow rates that are computed at the end of the time step are labeled as flow rates at the beginning of the next time step.

FUNCTION IDC_AdvanceState() **RESULT**(iStat)

INTEGER :: iStat

END FUNCTION IDC_AdvanceState

iStat : Error code that is returned by the procedure; 0 represents successful execution of the procedure.

7.6.1.11 IDC_GetDeepPercAll

This procedure is used to get the deep percolation computed at all elements of the computational grid computed by IDC. These values can be used by the calling simulation model as the recharge to the groundwater.

SUBROUTINE IDC_GetDeepPercAll(NElements,DeepPerc)

INTEGER, **INTENT**(IN) :: NElements

REAL(8), **INTENT**(OUT) :: DeepPerc(NElements)

END SUBROUTINE IDC_GetDeepPercAll

NElements : Number of cells in the computational grid.

DeepPerc : Deep percolation at every cell computed by IDC.

7.6.1.12 IDC_GetDeepPercElement

This procedure is used to get deep percolation at a specific cell of the computational grid computed by IDC.

FUNCTION IDC_GetDeepPercElement(iElem) **RESULT**(DeepPerc)

INTEGER, **INTENT**(IN) :: iElem

REAL(8) :: DeepPerc

END FUNCTION IDC_GetDeepPercElement
iElem : Identification number of the grid cell for which the deep percolation computed by IDC is required.

DeepPerc : Deep percolation at grid cell iElem computed by IDC.

7.6.1.13 **IDC_GetFlowsToStreams**

This procedure obtains the surface flows computed by IDC into the modeled stream nodes.

```fortran
SUBROUTINE IDC_GetFlowsToStreams(NStrmNodes,DirectRunoff,ReturnFlow)
   INTEGER,INTENT(IN)  :: NStrmNodes
   REAL(8),INTENT(OUT) :: DirectRunoff(NStrmNodes),ReturnFlow(NStrmNodes)
END SUBROUTINE IDC_GetFlowsToStreams
```

NStrmNodes : Number of stream nodes modeled by the model that is linked to IDC. The destination of surface flows from each grid cell is specified in IDC input data files.

DirectRunoff : Direct runoff from precipitation into each of the modeled stream nodes.

ReturnFlow : Irrigation return flow into each of the modeled stream nodes.

7.6.1.14 **IDC_GetElementWaterDemand_Ag**

This subroutine obtains the agricultural water demand at each grid cell computed by IDC. These demands can be used by the linking model to adjust the diversions and groundwater pumping.

```fortran
SUBROUTINE IDC_GetElementWaterDemand_Ag(NElements,ElemDemand)
   INTEGER,INTENT(IN)  :: NElements
   REAL(8),INTENT(OUT) :: ElemDemand(NElements)
END SUBROUTINE IDC_GetElementWaterDemand_Ag
```

NElements : Number of cells in the computational grid.

ElemDemand : Agricultural water demand at each grid cell computed by IDC.
7.6.1.15 **IDC_GetElementWaterDemand_Urb**

This subroutine obtains the urban water demand at each grid cell computed by IDC. These demands can be used by the linking model to adjust the diversions and groundwater pumping.

```fortran
SUBROUTINE IDC_GetElementWaterDemand_Urb(NElements,ElemDemand)
  INTEGER, INTENT(IN) :: NElements
  REAL(8), INTENT(OUT) :: ElemDemand(NElements)
END SUBROUTINE IDC_GetElementWaterDemand_Urb
```

NElements : Number of cells in the computational grid.
ElemDemand : Urban water demand at each grid cell computed by IDC.

7.6.1.16 **IDC_GetAgAreas**

This subroutine obtains the agricultural areas at each grid cell.

```fortran
SUBROUTINE IDC_GetAgAreas(NElements,Areas)
  INTEGER, INTENT(IN) :: NElements
  REAL(8), INTENT(OUT) :: Areas(NElements)
END SUBROUTINE IDC_GetAgAreas
```

NElements : Number of cells in the computational grid.
Areas : Agricultural areas at each grid cell.

7.6.1.17 **IDC_GetUrbanAreas**

This subroutine obtains the urban areas at each grid cell.

```fortran
SUBROUTINE IDC_GetUrbanAreas(NElements,Areas)
  INTEGER, INTENT(IN) :: NElements
  REAL(8), INTENT(OUT) :: Areas(NElements)
END SUBROUTINE IDC_GetUrbanAreas
```

NElements : Number of cells in the computational grid.
Areas : Urban areas at each grid cell.
7.6.1.18 **IDC_IsRootZoneDefined**

This function checks if the root zone component has been instantiated.

FUNCTION IDC_IsRootZoneDefined() **RESULT**(iDefined)
INTEGER :: iDefined
END FUNCTION IDC_IsRootZoneDefined

iDefined : Flag to check if the root zone has been instantiated; a value of 0 means it has not been instantiated and a value of 1 means it has been instantiated.

7.6.1.19 **IDC_GetVersion**

This subroutine returns the version number of IDC.

SUBROUTINE IDC_GetVersion(LenVersion,cVersion)
INTEGER, **INTENT**(IN) :: LenVersion
CHARACTER, **INTENT**(OUT) :: cVersion*LenVersion
END SUBROUTINE IDC_GetVersion

LenVersion : Maximum length of the version number in terms of characters. The version number is at least 9 characters long.

cVersion : Version number of IDC.

7.6.2 **Example Code That Links to IDC**

For IDC to execute properly when linked to other models, it is necessary to invoke the procedures in the IDC DLL in a specific order. Figure 18 is an example code that demonstrates how another model can be linked to IDC. The code is incomplete because particular procedures to execute the linking model are not shown. The example assumes that the computational grid has 1000 cells with 100 stream nodes modeled. The linked IDC and model combination runs for 3000 time steps.

The example given in Figure 18 assumes that the aquifer and stream systems simulated by the linked model have enough storage to meet the water demand computed by IDC at all
times. In certain cases, the aquifer and stream storage may be limited and the demand may not be met. In this case, iterations between the linked model and IDC may be necessary. This is a complex situation and is not considered in Figure 18.
PROGRAM Test_IDC_DLL
IMPLICIT NONE

!Local variables
CHARACTER(LEN=11) :: cFile = 'IDC_Main.in'
INTEGER,PARAMETER :: nTimeSteps= 3000 , &
nElems = 1000 , &
nStrms = 100
INTEGER :: iStat,indx,Dest(nElems),DestType(nElems),iEndOfSimulation
INTEGER,EXTERNAL :: IDC_GetMainControlData,IDC_InitApp,IDC_AdvanceTime, &
IDC_GetTimeSeriesData,IDC_ComputeWaterDemand, &
IDC_ZeroSupply,IDC_SupplyToElem,IDC_Simulate, &
IDC_PrintResults,IDC_AdvanceState
REAL(8) :: Supply_Diversion(nElems),Supply_GW(nElems), &
DeepPerc(nElems),Demand(nElems),DirectRunoff(nStrms),&
RetFlow(nStrms)

!Initialize the model
iStat = IDC_GetMainControlData(11,cFile) !Read the Main Control Data
iStat = IDC_InitApp() !Instantaite model
DestType = 2 !Destination for water supply is elements
Dest = (/((indx,indx=1,nElems))/) !List of all elements as destination for supply
iEndOfSimulation = 0 !It is NOT end-of-simulation yet

!Run the model
DO indx=1,nTimeSteps
iStat = IDC_AdvanceTime() !Advance time step to read proper data from input files
iStat = IDC_GetTimeSeriesData() !Read the time-series data at the simulation time step
iStat = IDC_ComputeWaterDemand() !Compute water demand at each element
iStat = IDC_ZeroSupply() !Zero out all water supply to all elements
CALL IDC_GetElementWaterDemand(nElems,Demand) !Obtain the water demand at each element

!Here, linked model computes groundwater pumping and diversions
! to meet water demand
Supply_Diversion = ...
Supply_GW = ...

iStat = IDC_SetSupplyToElem(nElems,Supply_Diversion,1,Dest,DestType) !Water supply as diversions
iStat = IDC_SetSupplyToElem(nElems,Supply_GW,2,Dest,DestType) !Water supply as pumping
iStat = IDC_Simulate() !Compute root zone/land surface flows
IF (indx .EQ. nTimeSteps) iEndOfSimulation = 1 !Is it the last time step?
iStat = IDC_PrintResults(iEndOfSimulation) !Print results from IDC
CALL IDC_GetDeepPercAll(nElems,DeepPerc) !Obtain computed deep perc at all elements
CALL IDC_GetFlowsToStreams(nStrms,DirectRunoff,RetFlow) !Obtain the surface runoff into streams

!Here, the linked model simulates stream and groundwater
! dynamics with IDC-computed deep percolation and flows
! into stream
CALL LinkedModel_Simulate(DeepPerc,DirectRunoff,RetFlow,...)

iStat = IDC_AdvanceState() !Advance the state of the root zone in time
END DO
END

Figure 18. Example code demonstrating the linkage of IDC to another model
8 References

University of California Cooperative Extension.
