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1. Introduction 

State of California Department of Water Resources (DWR) has been developing 

and maintaining an integrated regional groundwater and surface water modeling tool in 

order to assist its water resources management and planning studies.  The simulation of 

the groundwater elevations using the Galerkin finite element method (GFEM) lies at the 

core of this model.  The model, named Integrated Water Flow Model (IWFM), is a 

generic simulation tool that can be applied to any groundwater basin (DWR 2007).  The 

users of IWFM include DWR staff, consulting companies, other state and federal 

agencies, and universities.  The applications of IWFM include California Central Valley 

Simulation Model (C2VSIM), Western San Joaquin Basin Model (WESTSIM), and 

applications to the Merced Basin and Butte County. 

Over the past years IWFM users have requested the development of a feature that 

allows the detailed listing of inflow and outflow components at sub-domains of a 

modeled groundwater basin, a feature similar to the ZoneBudget post-processor 

(Harbaugh 1990) to the well known MODFLOW (McDonald and Harbaugh 1988).  The 

need stemmed from the fact that modeling studies required the quantification of the 

changes in the subsurface flow rates between adjacent sub-domains (usually defined by 

political boundaries such as water districts, counties, states, etc.) of the modeled 

groundwater basin due to changing surface/subsurface water management practices in 

these sub-domains.  The need to examine the detailed inflow/outflow components at a 

sub-domain level during calibration and verification stages of a modeling study was 

another reason behind the need for such a feature.   
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This report details a computer program, named Z-Budget, which is developed as a 

post-processing tool to be used with IWFM.  Z-Budget recovers the subsurface flows at 

element interfaces given the groundwater heads computed by IWFM.  Usage of Z-Budget 

will allow DWR, as well as other users of IWFM, to quantify the effects of water 

management practices utilized in one water district on the water resources of the adjacent 

districts, leading to a better analysis of the water management policies and practices.   

 

2. Theoretical Background 

Unlike in finite difference models such as MODFLOW, the recovery of 

groundwater fluxes based on the simulated groundwater heads in finite element models 

such as IWFM is not a straightforward task.  Conventionally, the flux field is computed 

with Darcy’s law by differentiating the head field that is calculated by the GFEM 

directly.  The flux field generated by the conventional method is continuous over 

elements but discontinuous at the element interfaces violating the principle of mass 

conservation in both local and global sense.  Yeh (1981) reported global mass balance 

errors of up to 30% when the conventional method is used.  He suggested that the finite 

element procedure that is used to simulate the groundwater head field also be applied to 

Darcy’s law with the fluxes as the state variables.  Although his method produced better 

results, test problems still showed mass balance errors of 2-9% (Yeh 1981).  Furthermore, 

Yeh’s method increases the computer run times substantially since the number of 

equations to be solved is tripled for two-dimensional (quadrupled for three-dimensional) 

problems due to the inclusion of fluxes as state variables.  Commenting on Yeh’s work, 

Lynch (1984) showed that precise global mass balance can be achieved in GFEM by 
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proper treatment of the Dirichlet boundary conditions.  He pointed out that the common 

practice of discarding Galerkin equations − the discrete version of the conservation 

equation − along Dirichlet boundaries violates the mass balance by requiring that these 

fluxes be approximated by utilizing the conventional method of differentiating the 

numerical head solution.  He showed that retaining the Galerkin equation at Dirichlet 

boundaries as the equation for the flux resulted in precise global mass balance.  Similar 

observations have been made by other researchers (Carey 1982, Carey et al. 1985, 

Hughes et al. 2000, Berger and Howington 2002, Carey 2002).  In fact, the same idea can 

be used to compute the internal fluxes, i.e. once the groundwater head at an internal node 

is computed with GFEM, that node can be treated as a Dirichlet boundary and the 

Galerkin equation at the node can be solved for the flux (Hughes et al. 2000, Carey 

2002).  Cordes and Kinzelbach (1992) used a post-processing method where the elements 

were subdivided into patches and individual fluxes for each patch were computed by 

assuming that the flow field was irrotational.  The mixed hybrid finite element method is 

another technique that was proposed to compute continuous flux fields (Chavent and 

Jaffré 1986).  In this method, both head that is assumed piecewise constant over each 

element and flux that is associated with element edges are computed directly by solving 

the mass conservation equation and Darcy’s law, simultaneously.  In a study comparing 

the performance of the mixed hybrid finite element method and the post-processing 

technique of Cordes and Kinzelbach (1992), Mosé et al. (1994) claimed that the latter led 

to a substantial increase in CPU time. 

Z-Budget utilizes an efficient post-processing technique that combines several 

approaches that are described in the studies mentioned above.  Once the groundwater 
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heads are computed by IWFM at each finite element node, Z-Budget treats each node as a 

Dirichlet boundary node with a specified head and uses the irrotationality of the flow 

field to compute flows across element interfaces, i.e. normal flux integrated along each 

element interface.  Once IWFM is run for a simulation period and the flow rates at every 

element interface is computed, the user can group one or more elements into individual 

zones and list the detailed inflow/outflow components into each of these zones.  In the 

following sections, the mathematical development of the underlying theory for Z-Budget 

will be detailed. 

In IWFM, the depth-integrated conservation equation for groundwater flow is 

expressed as (DWR 2007) 

hS f
t

∇ q∂
+ ⋅ =

∂
 (1) 

where S is the storativity (specific yield for an unconfined aquifer and storage coefficient 

for a confined aquifer) (dimensionless), ( )h h x, y, t=  is the groundwater head (L), 

x yq qx yq e e= +  is the depth-integrated flux, or simply flux, in vector form with xe  and 

ye  being the unit vectors in the x and y directions respectively (L2/T), f is the source/sink 

term (L/T), ( ) ( )x y∇ x ye e= ∂ ∂ + ∂ ∂  is the del operator (1/L), and t is time (T).  In (1), 

( )f f h, x, y, t=  is a general source/sink term that may be a combination of point sources 

(e.g. pumping and injection wells), distributed sources (e.g. recharge from an overlaying 

vadose zone) and head dependent sources (e.g. tile drains, stream-groundwater 

interaction). 

Using the Darcy’s law, q  can be represented as 

T h∇q = −  (2) 
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and 

( )u bT K min h, z z⎡ ⎤= −⎣ ⎦  (3) 

where T is the aquifer transmissivity (L2/T), ( )K K x, y=  is the hydraulic conductivity 

(L/T), uz  and bz  are the top and bottom aquifer elevations (L), respectively.  Equation 

(3) represents transmissivity for both confined and unconfined aquifers. 

Integrating (1) in a weak sense for an arbitrary domain Ω, using the Green’s 

theorem and rearranging the resulting expression gives 

hd d S f d
t

∇q n q

Γ Γ Ω

∂⎛ ⎞− ⋅ ω Γ = θω Γ = ω − ⋅ ω − ω Ω⎜ ⎟∂⎝ ⎠∫ ∫ ∫  (4) 

where ( )x, yω = ω  is an admissible test function, Γ is the boundary surrounding the 

domain Ω, n is the outward unit vector perpendicular to Γ and q nθ = − ⋅  is the flux 

normal to Γ.  Based on the boundary conditions, Γ can be divided into Dirichlet 

boundary, ΓD, where groundwater head is specified and Neumann boundary, ΓN, where 

normal flux, θN, is specified.  Expressing the boundary integral in (4) as the summation of 

integrals over the Dirichlet and Neumann boundaries and substituting Darcy’s law into 

(4), the exact normal flux at the Dirichlet boundary, θD, satisfies the following equality: 

D N

D D N N
hd S T h f  d d
t

∇ ∇

Γ Ω Γ

∂⎛ ⎞θ ω Γ = ω + ⋅ ω − ω Ω − θ ω Γ⎜ ⎟∂⎝ ⎠∫ ∫ ∫  (5) 

(5) is the weak formulation of the groundwater flow conservation equation on 

which GFEM is based.  It should be noted that even though the exact normal flux at the 

Dirichlet boundary appears in (5), no information can be deduced as to the functional 
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form of θD.  The left hand side of (5) actually represents the net flow through the 

Dirichlet boundary in a weak sense.   

In GFEM, a set of finite element basis functions { }iω  on a discretization of Ω is 

introduced, and the head and test functions are approximated as (Allen et al. 1988) 

( ) ( )
m

i i
i 1

h h t x, y
=

= ω∑  (6) 

( )i x, y  , i 1, , mω = ω =  (7) 

where m is the number of nodal points based on the discretization.  In the remainder of 

the mathematical development it will be assumed that the basis functions used in (7) are 

linear Lagrange basis functions since they are a typical choice in most GFEM 

applications.  Substitution of (6) and (7) into (5) generates a set of ordinary differential 

equations: 

D

N

m m
j

i D i D i j j j i i
j 1 j 1

N i N

h
Q d S T h f d

t

d , i 1, ,m

∇ ∇
= =Γ Ω

Γ

⎛ ⎞∂
⎜ ⎟= θ ω Γ = ω ω + ω ⋅ ω − ω Ω
⎜ ⎟∂
⎝ ⎠

− θ ω Γ =

∑ ∑∫ ∫

∫
 (8) 

where Qi can be interpreted as the flow through a section of the Dirichlet boundary, ΓD, 

associated with boundary node i.  Only one type of boundary condition, either Dirichlet 

or Neumann, can be specified at a node.  If a Dirichlet boundary condition is specified at 

node i, then the term that represents the flux integral over the Neumann boundary, ΓN, 

vanishes in (8).  On the other hand, if a Neumann boundary condition is specified, then Qi 
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becomes zero.  For internal nodes, test functions vanish on the boundary, rendering the 

boundary integrals in (8) as zero. 

Further modifications on (8) are performed before attempting to solve the system 

of equations: a mass lumping technique may be applied on the time derivative (Allen et 

al. 1988); the time derivative may be discretized using finite difference method; 

transmissivity may be approximated as a piecewise constant over elements, as an 

expression similar to the one given in (6) or simply as a constant over the entire domain.  

Finally, equation (8) is converted into a set of algebraic equations that are relatively easy 

to solve.  Regardless of the specific modifications, (8) is the expression for groundwater 

flow at the Dirichlet boundary that is consistent with the GFEM.  It is, in fact, the 

Galerkin equation at the Dirichlet boundary that needs to be retained as the flow equation 

in order to achieve a precise mass balance (Lynch 1984).  If there are mD boundary nodes 

specified as Dirichlet nodes, then equation (8) represents mD equations to be solved 

simultaneously to recover the flow at the Dirichlet boundary.  During the application of 

GFEM, the right hand side of (8) is evaluated to compute the groundwater heads.  

Therefore, calculation of the flow at the Dirichlet boundary nodes requires a small 

amount of computation time and the mass balance obtained by using these flows is 

accurate up to the machine precision (Hughes et al. 2000). 

Equation (8) is written for an arbitrary domain, Ω, and its enclosing boundary, Γ.  

Therefore, it is valid for any collection of elements: the set of all elements that 

approximate the entire model domain, a subset of these elements or even an individual 

element.  Figure 1.a depicts an example discretization of global domain, Ωg, and two 

groups of elements that represent sub-domains, Ω1 and Ω2, and their respective enclosing 



 

 8

boundaries Γg, Γ1 and Γ2.  When (8) is written for any of the sub-domains, the head 

values at the sub-domain boundary nodes that are obtained from the application of GFEM 

can be treated as Dirichlet boundary nodes. Then, (8) produces the flows at boundary 

 

Figure 1 Descriptive schematics of (a) discretizations of global and two 
subdomains, (b) enlarged view of vicinity of node i 
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nodes of the sub-domain.  As such, (8) is a post-processing technique for the recovery of 

the boundary flows based on the nodal head values and it is consistent with the GFEM 

approximation.   

The aim is to utilize equation (8) to compute flows through each of the element 

faces of the finite element grid so that a precise mass balance for arbitrarily defined 

collections of elements as well as the flows between adjacent element collections can be 

computed.  To achieve this, however, (8) alone can not be used and it is necessary to 

utilize further information such as the irrotationality of the flow field.  To demonstrate 

this point, node i in Figure 1.a, which lies between two sub-domains, will be considered.  

Figure 1.b shows an enlarged view of the vicinity of node i and the corresponding patch 

with e1 and e2 as the elements that belong to sub-domains 1 and 2, respectively.  Patch i 

in Figure 1.b is constructed by connecting the lines that perpendicularly cross element 

faces at mid-points.  When (8) is written for element e1 at node i, it represents the 

conservation of mass at the intersection of patch i and element e1: 

1 1

e1

e e
i i,2 i,1iQ F d Q Q

Ω

= Ω = −∫  (9) 

where 1e
iQ  is the flow that crosses the patch boundary (dashed line in Figure 1.b) in 

element e1, Fi is the integrand in (8), 1eΩ  is the domain of element e1, Qi,1 is the flow 

through half of the interface between elements e1 and e4, and Qi,2 is the flow through half 

of the interface between elements e1 and e2, as depicted in Figure 1.b.  Since the exact 

normal flux expressed as a function of distance along the faces of element e1 is not 

known, Qi,1 and Qi,2 can not be determined directly; (9) represents a single equation with 

two unknowns.  Writing (8) also for element e2 at node i, produces two equations with 
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three unknowns, namely Qi,1, Qi,2 and Qi,3.  Finally, expressing (8) for all the surrounding 

elements of node i generates four equations with four unknowns but the resulting system 

of equations is underdetermined, i.e. one of the equations in the system is a linear 

combination of the rest: 

1

2

3

4

e
ii,1
e

i,2 i
ei,3 i
ei,4
i

QQ1 1 0 0
Q Q0 1 1 0

0 0 1 1 Q Q
1 0 0 1 Q Q

⎧ ⎫⎧ ⎫−⎡ ⎤ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪−⎣ ⎦ ⎩ ⎭ ⎪ ⎪⎩ ⎭

 (10) 

To close the system of equations in (10), irrotationality of the flow field will be 

assumed.  Similar approaches have also been taken by Cordes and Kinzelbach (1992), 

and Chou et al. (2004).  The irrotationality of the flow field can be expressed as 

y xq q 0
x y

∇ ∇q q∗∂ ∂
× = − = ⋅ =

∂ ∂
 (11) 

where y xq qx yq e e∗ = − .  Writing equation (11) in a weak sense using the finite element 

basis functions and applying the Green’s theorem gives 

( )
m

i i j i j
j 1

Q d T h  d ; i 1, , m∇ ∇q n∗ ∗ ∗

=Γ Ω

= ⋅ ω Γ = ω ⋅ ω Ω =∑∫ ∫  (12) 

where iQ∗  is the circulation at node i (Bear 1988) and ( ) ( )y x∇ x ye e∗ = ∂ ∂ − ∂ ∂ .  Since 

∗ ⋅ = ⋅ Tq n q n , where Tn  is the unit tangent at the boundary in a counter clockwise 

direction, (12) represents the line integral of the tangential flux at the boundary, Γ.  The 

evaluation of (12) requires the additional computation of the integral  

i j  d ; i, j 1, , m∗

Ω

ω ⋅ ω Ω =∫ ∇ ∇  (13) 
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where it is assumed that the transmissity is approximated so that it can be taken out of the 

integral.  Regardless of the approximation of the transmissivity, the integral in (13), or 

any variants of it due to a particular approximation, needs to be computed only once at 

the beginning of the simulation, and should not increase the computer run times 

significantly. 

Adopting the convention where the counter clockwise direction is positive and 

writing (12) for element e1 at node i (Figure 1.b) gives 

1 1

e1

,e e
i i,2 i,1iQ G d Q Q∗ ∗ ∗

Ω

= Ω = −∫  (14) 

In (14), 1,e
iQ∗  is the integral of the tangential flux along the part of the patch 

boundary that lies in element e1 (Figure 1.b), Gi is the integrand in (12), i,2Q∗  is the 

integral of the tangential flux along half of the interface between elements e1 and e2, and 

i,1Q∗  is the integral of the tangential flux along half of the interface between elements e1 

and e4.  Since the circulation about any closed curve at any location in an irrotational 

flow has to be zero (Bear 1988), 1,e
iQ∗  counter-balances the integral of the tangential flux 

along the faces of element e1 that fall in patch i, i.e. i,2 i,1Q Q∗ ∗− .  When (12) is written at 

internal nodes, the test functions vanish at the global boundary and iQ∗  in (12) becomes 

zero.  This result is consistent with the theory that the circulation about a closed curve in 

an irrotational flow field is zero.  On the other hand, a closed curve around a boundary 

node can not be specified, and expressing (12) at a boundary node produces a non-zero 

value. 
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To utilize (12) as a closure to the system of equations listed in (10), it is necessary 

to express the components of the circulation, i,kQ∗ , in the patch in terms of the flow 

terms, Qi,k.  For this purpose, it will be assumed that the normal flux at the element face 

that falls in the patch is constant and Qi,k can be expressed in terms of this normal flux.  

For instance, Qi,1 in Figure 1.b can be used to express the constant normal flux at the half 

of the interface between elements e1 and e4: 

1 4
1 4 1 4

e ,e e ,e1 4 1 4

e ,ei i
i,1 i ie ,e e ,e

L
Q d d

2
Γ Γ

= θω Γ ≅ θ ω Γ = θ∫ ∫  (15) 

or 

1 4
1 4

i
i,1e ,e

e ,e

2 Q
L

θ =  (16) 

where 
1 4

i
e ,eθ  is the constant patch flux normal to the element face that falls into patch i, 

1 4e ,eΓ  is the interface between the two elements and 1 4e ,eL  is the length of the interface.  

As noted earlier, (16) is obtained assuming that the linear Lagrange basis is used for ωi.  

A similar expression can be written for the normal flux at the interface between elements 

e1 and e2 that falls into patch i (Figure 1.b): 

1 2
1 2

i
i,2e ,e

e ,e

2 Q
L

θ =  (17) 

Next, it will be assumed that the patch flux normal to the element face is equal to 

the flux that is tangent to the patch boundary and it is spatially constant along the 

corresponding side of the patch.  For example, in Figure 1.b 
1 4

i
e ,eθ  is assumed to be the 

flux tangent to the side of the patch with length ξ1.  Similarly, 
1 2

i
e ,eθ  is assumed to be the 
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flux tangent to the side of the patch with length ξ2 (Figure 1.b).  Finally, using the 

expressions for the tangent fluxes the irrotationality at an internal node can be written as 

ic
k

i,k
i,kk 1

2 Q 0
L=

ξ
=∑  (18) 

where ci is the number of element faces that connect at node i, Li,k is the length of the 

element face k, and ξk is the length of the patch boundary that crosses element face k 

perpendicularly.  (18) corresponds to (12) where the tangent fluxes are approximated in 

terms of normal fluxes, as described above.   

For a boundary node a closed curve can not be specified and application of (12) 

and (18) generates a non-zero value: 

( )
ic m

k
i,k j i j

i,kk 1 j 1

2 Q T h  d
L

∗

= =Ω

ξ
= ∇ ω ⋅∇ω Ω∑ ∑∫  (19) 

The right-hand side of (19) can easily be computed by using the head and 

transmissivity values obtained from the solution of (1) using GFEM. 

Replacing the last equation of the system described in (10) by (18) or (19) for 

internal and boundary nodes, respectively, produces a well-posed set of equations that 

can be solved very efficiently.  The system of equations is defined for each node and can 

be solved locally independent from the equation systems defined for other nodes.  For an 

element face identified with nodes i and j, two flow terms will be computed: one for node 

i that crosses through half of the element face located in patch i, and the other for node j 

that crosses the other half of the face located in patch j.  Once the two flow terms are 

computed they can be summed to obtain the net flow through the entire element face 

defined by nodes i and j. 
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The preceding mathematical development assumes that the flow field is 

irrotational.  It can be shown that the depth-integrated conservation equation (1) always 

satisfies the irrotationality condition (Bear 1988).  Therefore, utilizing the above 

approach can be used under any circumstances as long as (1) is used to model the 

groundwater flow.  However, the approach detailed above is general enough so that it is 

applicable to any form of the groundwater flow equation as long as the flow field is 

irrotational. 

 

3. Verification of Methodology 

The accuracy and the convergence characteristics of Z-Budget are now 

demonstrated by comparing the results to the analytic solutions of several test problems.   

 

Example 1 

The first example deals with the radial flow to a well that fully penetrates a 

confined aquifer with a uniform thickness of 100 m.  The aquifer is homogeneous, 

isotropic and has an infinite extent.  The hydraulic conductivity and the specific storage 

of the aquifer are 2.3x10-5 m/sec and 7.5x10-6 m-1, respectively.  The well diameter is 

small and the storage in the wellbore can be neglected.  The pumping rate is constant at 

0.004 m3/sec.  The analytical expressions for the drawdown and the flow at a distance 

from the well can be obtained by using the Theis method (Theis 1935). 

By symmetry, the drawdown and the flow were simulated only in a single 

quadrant of the domain using non-uniform grid spacing.  In the angular direction the 

quadrant was discretized into four equal regions.  The grid spacing in the radial direction 
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was increased at specified intervals as the distance from the well increased.  For the 

purposes of numerical simulation the infinite extent of the aquifer was approximated by 

setting specified head boundary conditions at 20000 m away from the well.  The initial 

groundwater head and the specified head at the boundary were each set to 150 m.  The 

simulation period was 1 day with 10 second time steps.  To assess the performance of Z-

Budget the flow rate simulated at a radius of 55 m from the well is compared to the flow 

rate computed using the Theis (1935) solution.  To further check the rate of convergence 

of the results from Z-Budget to the analytical solution, the same problem was solved with 

a successively refined grid in the radial direction.  The discretization in the angular 

direction was kept the same for all grid resolutions. 

Figure 2.a shows a comparison of the flow rate at a radius of 55 m from the well 

computed with the Theis method and Z-Budget at the coarsest grid resolution tested.  It is 

obvious that Z-Budget gives excellent results even at a coarse grid resolution.  For the 

purpose of establishing the convergence rate of Z-Budget to the analytical solution, 

Figure 2.b depicts the logarithmic plots of the grid size versus error in the flow as well as 

the drawdown.  The error term both for flow and drawdown is computed as the 

normalized L2-norm of the error vector for the simulation period: 

( )

( )

i i

i

tmax 2
s a

i 1
tmax 2

a
i 1

f f

E

f

=

=

−

=
∑

∑
 (20) 

where E is the normalized L2-norm of the error vector, tmax is the maximum number of 

time steps for the simulation period, isf  is the value (flow or drawdown) at the ith time 
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step computed by the numerical simulation, and iaf  is the corresponding value at the ith 

time step computed by the Theis method. 

It should be noted that for all tested grid sizes the error in flow is very small 

(Figure 2.b).  Figure 2.b shows that the convergence rate for the flow is non-linear and 

logarithm of the flow error converges to a constant at around −6.75.  This is expected 

because the infinite-aquifer assumption used for the analytical solution is approximated 

with a finite aquifer extent in the numerical solution.  Therefore, a discrepancy between 

 

Figure 2 Results for example 1: (a) Flow comparison at 55 m from the well and (b) 
log-log plot of grid size versus error in flow and drawdown 



 

 17

the analytical and the numerical solutions will always be observed, and it is logical that 

the difference between the two solutions converges to a non-zero constant as the grid is 

refined.  The log-log plot of the drawdown versus error shows a similar trend in the 

convergence rate.  Comparison of the drawdown versus error and flow versus error plots 

also reveals that the convergence rate for the flow is about half the convergence rate for 

the drawdown.  Overall, Z-Budget to recover the flow rates at element faces in a Theis 

aquifer performs very well. 

 

Example 2 

The second example was designed to test the performance of Z-Budget in 

heterogeneous aquifer conditions.  It has been reported that as the level of heterogeneity 

increases the accuracy of the conventional method to recover flow rates also decreases.  

The setup for this example is shown in Figure 3.a.  An unconfined aquifer lies between 

two lakes.  The length of the aquifer in the x-direction, Lx, is 10 km and in the y-

direction, Ly, is 2 km.  The surface elevations of the lakes are constant but different from 

each other.  The lake on the right side of the aquifer has an elevation of H1 = 200 m and 

the left-hand-side lake has an elevation of H2 = 50 m.  There is no flow across the other 

two sides of the aquifer.  The specific yield, S, of the aquifer is 0.25.  The aquifer is 

composed of vertical strips of soil that are 200 m wide with different hydraulic 

conductivities.  The plan view of the aquifer and the finite element grid used in the 

simulation is shown in Figure 3.b.  The grid sizes in x and y directions, Δx and Δy 

respectively, are both 200 m.  To simulate heterogeneous aquifer conditions, each vertical 

strip of soil was assigned a random hydraulic conductivity, K.  The randomly 
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heterogeneous hydraulic conductivity field was assumed log-normally distributed, 

uncorrelated, and characterized by its coefficient of variation, Kρ , defined as 

K
K K

σ
ρ =  (21) 

where Kσ  and K  are the standard deviation and the mean of the random hydraulic 

conductivity field, respectively.  The performance of Z-Budget to compute the element 

face flows was tested for several degrees of heterogeneity with Kρ  taken as 0.0 

(homogeneous case), 0.5, 1.0, 2.0 and 3.0.  For all test cases K  was taken to be 100 

m/day.   

 

(a) 

H2 

water table
K1 K2  Kns 

H1 

x 
(b) 

Lx 

no flow 

no flow 

y 

Δx 

Δy Ly 

Figure 3 Definition sketch for example 2: (a) cross section of a heterogeneous 
aquifer between two lakes and (b) simulation grid (shaded area 
represents the test sub-domain) 
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Since there is no variation in the hydraulic conductivity in the y-direction and the 

upper and lower boundary conditions are symmetric (Figure 3.b), the flow between the 

two lakes is essentially one dimensional.  The analytical expression for the flux at the 

steady state of this problem can be expressed as 

( )2 2
2 1

ns

x
ii 1

H H
q

12W
K=

−
=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 (22) 

where Wx = 200 m is the width of soil strips in x-direction, ns = 50 is the total number of 

soil strips and Ki is the random hydraulic conductivity assigned to the ith strip.  H1 and H2 

are the specified head boundary conditions as defined earlier (Figure 3.a).   

To assess its performance, the results of Z-Budget are compared with the 

analytical solution as well as the conventional method of computing the flows at element 

faces.  It should be noted that, since the flow computed by the conventional method is 

discontinuous at an internal element interface, the average of the flows on each side of 

the interface is used in the comparisons.  

First, the behavior of the simulated flows at the boundary element faces is 

analyzed.  Figure 4 shows a comparison of the flow computed at each of the boundary 

element faces, starting at the lower left boundary face, by using the analytical, proposed 

and conventional methods for ρK = 1.0.  It is obvious that the conventional method of 

computing flows violates the no flow conditions at the upper and lower boundaries (see 

Figure 3 for boundary conditions).  On the other hand, Z-Budget preserves the no flow 

boundary conditions except at the lower right and the upper left corners of the domain.  

This behavior is due to the grid used in the example.  Even though the actual flow is one 
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Figure 4 Comparison of flows computed at the boundary element faces for ρK = 1.0 
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dimensional, the application of GFEM produces a small, artificial flow along the diagonal 

element faces specified in the finite element grid (Figure 3.b).  Z-Budget correctly 

computes zero flows across the upper and lower boundary element faces except at the 

upper left and lower right corners of the domain where two different boundary conditions 

interface.  This phenomenon is not observed at the lower left and upper right corners of 

the grid because the element faces are in alignment with the actual flow direction.  At 

these corners, flow can only occur in either x or y direction along the horizontal or 

vertical faces, respectively.  Z-Budget computes correct element face flows since no 

artificial diagonal flow is introduced at these locations. 

Figure 5 shows the comparison of the normalized L2 norm, computed using (20), 

of the error vectors for the boundary face flows computed by the proposed and 

conventional methods for differing levels of heterogeneity.  As the level of heterogeneity 

increases the error in the boundary face flows produced by both of the methods also 

 

Figure 5 Comparison of the error for boundary flows computed by the proposed 
and conventional methods for different levels of heterogeneity 
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increases.  However, it can be seen that Z-Budget consistently produces more accurate 

flow results than the conventional method. 

To assess the convergence rate of Z-Budget the initial grid was refined 

progressively by halving the grid spacing both in x and y directions for ρK = 1.0.  Figure 

6 shows the logarithm of the grid size versus the logarithm of the normalized L2 norm, E 

(computed by using (20)), of the flow error computed at each element face by using the 

proposed and the conventional methods.  It can be seen that Z-Budget has a slightly 

 

Figure 6 Log-log plot of the grid size versus error in flow computed by the 
proposed and conventional methods for ρK = 1.0 
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higher convergence rate than the conventional method and its overall accuracy is better.  

The conventional method requires about 4 times more grid points than Z-Budget to 

achieve a comparable level of accuracy. 

Yeh (1981) reported large discrepancies in the global mass balance when the flow 

rates computed by the conventional method were used.  To further demonstrate the 

benefits of Z-Budget of flow recovery, Table 1 compares the total inflow and outflow to 

the aquifer computed by the analytic, conventional and proposed methods as well as the 

global mass balance error in the conventional method at different levels of heterogeneity 

with the grid size of 200 m.  The conventional method produces increasing global mass 

balance errors of up to 45% as the heterogeneity increases whereas proposed method 

shows precise mass balance.  It appears that as the heterogeneity increases the difference 

between the flow rates computed with analytic and proposed methods also increases.  

This suggests the necessity of using finer mesh as the heterogeneity of the aquifer 

increases.  In the light of the discussion given in the preceding paragraph, Z-Budget 

would require 4 times fewer nodal points than the conventional method to achieve a 

certain level of accuracy with precise global mass balance.   

One of the goals of this report is to demonstrate the ability of Z-Budget to recover 

element face flows based on the groundwater heads computed by GFEM so that mass 

balances can be established at the sub-domain level.  Table 2 shows the performance of 

Z-Budget in computing the inflow and outflow rates into an arbitrarily chosen sub-

domain for ρK = 1.0 at differing grid resolutions.  The sub-domain is shown as the shaded 

area in Figure 3.b.  Once again, Z-Budget achieves precise mass balance at sub-domain 

level whereas the conventional method generates up to 23% of mass balance error.  Table 
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2 also shows the convergence rate of Z-Budget at around 1.2.  At the sub-domain level, 

the conventional method does not display a uniform convergence.  It should be noted 

that, since the total inflow and outflow rates to and from the zone computed by the 

conventional method are not the same, their averages are used in computing the percent 

difference between the analytic and the conventional method in Table 2.As mentioned 

earlier, using Z-Budget to recover the flow rates by post-processing the groundwater 

heads computed by the GFEM increases the computer run-times minimally.  In all test 

problems, the average increase in the computer run-times when Z-Budget was utilized 

was 1.25% with a maximum increase of 2.75% (Table 3).  All the test problems were run 

on a 2.2 GHz Intel Pentium 4 processor with 1GByte RAM running with the Windows 

2000 operating system.  Even though it is difficult to measure the exact increase in the 

run-time due to the unpredictable effect of programs running in the background, it can be 

concluded that the extra computational time required by Z-Budget is insignificant.  As 

mentioned earlier, this is due to the fact that most of the required information to compute 

the element face flows is already available through the application of the GFEM to 
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compute the groundwater heads.  Furthermore, Z-Budget requires the solution of a small 

system of equations, which can be performed very efficiently, at each node to recover the 

flow terms in a local sense. 

 

4. Program Description 

Z-Budget is written in FORTRAN 95 and includes several subroutines (Figure 7).  

A subroutine named Nflow.for is imbedded in the IWFM Simulation program.  Nflow.for 

computes individual inflow/outflow components at each finite element due to model 

specific sources and sinks.  This subroutine is also responsible of computing the element 

face flows based on the methodology described above.  The inflow/outflow components 

for each element are saved in a binary file which is later used by the core Z-Budget 

program.  The core program is responsible of aggregating inflow and outflow 

components for zones specified by the user by grouping one or more elements, and listing 

the aggregated results for each zone.  In this section each of the Z-Budget subroutines 

will be described. 
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Figure 7  Z-Budget flowchart 
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Nflow This 

subroutine is imbedded in the IWFM Simulation 

program.  At the end of each time step, it computes 

individual inflow/outflow terms from application 

specific sources/sinks for each finite element.  The  

sources and sinks are essentially the vertical inflows 

and outflows at each of the finite element at each 

aquifer layer.  The computed values are stored in a 

binary file. 

 

Face_flow This subroutine is also imbedded in IWFM simulation 

program.  At the end of each simulation time step, the 

flow rates at each element face are computed based on 

the groundwater head values simulated by IWFM.  The 

results are stored in the binary file. 

 

Zbudget_Main This is the main program of the Z-Budget post-

processor.  It calls other subroutines for reading zone 

information, flow terms that are stored in the binary file 

by Nflow and Face_flow in IWFM Simulation program, 

and processing of the flow terms based on the zone 

information. 
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GetMainControlData This subroutine reads information from the main Z-

Budget input file, the dimensions of the aquifer system 

that are saved in the Z-Budget binary file and calls 

other subroutines that construct the zonal definitions. 

 

GetZoneNumbersForPrinting This subroutine extracts the zone numbers from the 

main control file for which flux terms will be printed. 

 

PrepOutputFile This subroutine prepares the ASCII or DSS file for 

printing out the zonal flux terms and opens the 

temporary files used to store intermediate data during 

the processing of zonal flows. 

 

ReadZBudgetTableValues This subroutine reads flow terms stored in the binary 

file for a given simulation time step and aggregates 

them for each zone.  

 

PrintZBudgetTableValues This subroutine prints out the flow terms that are 

aggregated for each zone to intermediate storage files. 

 

FinalizeOutputFile This subroutine reads processed zonal flows from each 

of the intermediate files and combines them in the final 

ASCII or DSS file, whichever is specified for output. 
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4.1. Input Files 

The main control input file and the binary file that is generated during the 

execution of the IWFM Simulation program are required to run the Z-Budget post-

processor. 

The main input file contains the information about the name of the binary file 

from which flow terms will be read in, the extent of the zone numbering which will be 

explained later in this section, the conversion factor and unit names for the printed 

results, the starting and ending time steps for which the detailed water budget for each 

zone will be listed, the name of the DSS output file and the element and, if applicable, 

aquifer layer numbers that make up each zone. 

The following is a list of variables that appear in the main input file for Z-Budget. 

BINFILE The name of the binary file which is created by the IWFM 

Simulation program and stores the inflow and outflow terms for 

each element at each aquifer layer. 

DSSFILE The name of the DSS file which will be used to print out the zonal 

flow terms.  If left blank, the zonal flows will be printed to an 

ASCII file. 

ZEXTENT Flag to identify the extent of the zone numbering.  Enter 1 if zone 

numbering is defined in horizontal plane and applies to all aquifer 

layers in the vertical, enter 0 if different zone numbers will be 

specified for each aquifer layer.  When ZEXTENT is set to 1, the 

zone number that is specified for each element is applied to all 

aquifer layers.  In this case zones extend from the ground surface 
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to the bedrock.  When ZEXTENT is set to 0, then the user has to 

specify the element number and the aquifer layer in which the 

element lies when assigning zone numbers.  This option allows the 

user to specify three-dimensional zones. 

FACTVLOU Factor to convert the volumetric unit of values stored in the binary 

input file to the desired unit of output.  The unit of the values 

stored in the binary file is the same as the unit that is used in 

IWFM Simulation program internally. 

UNITVLOU Unit of the printed results. 

CACHE Cache size in terms of number of values stored in the memory for 

time series data output before the results are flushed into the output 

file.  This variable has a significant impact on the speed of Z-

Budget post-processor if a DSS file is being used for output. 

TBEGIN If the Simulation part of IWFM was run using the non-time 

tracking option, then this variable is used to specify the starting 

time step for which zonal flow terms will be printed.  If Simulation 

part of IWFM was run using the time tracking option, then this 

variable should be commented out. 

TLAST If the Simulation part of IWFM was run using the non-time 

tracking option, then this variable is used to specify the ending 

time step for which zonal flow terms will be printed.  If Simulation 

part of IWFM was run using the time tracking option, then this 

variable should be commented out. 
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BDT If the Simulation part of IWFM was run using the time tracking 

option, then this variable is used to specify the starting date and 

time for which zonal flow terms will be printed.  If Simulation part 

of IWFM was run using the non-time tracking option, then this 

variable should be commented out. 

EDT If the Simulation part of IWFM was run using the time tracking 

option, then this variable is used to specify the ending date and 

time for which zonal flow terms will be printed.  If Simulation part 

of IWFM was run using the non-time tracking option, then this 

variable should be commented out. 

IE Element number for which a zone number is assigned.  Only the 

elements that are contained in zones need to be listed.  For 

instance, if a single zone in the model domain needs to ne 

identified, only the elements that fall in this zone need to be listed.  

The element numbers can be listed in any order.  If ZEXTENT is 

set to 1 (i.e. zone numbering is defined for horizontal plane and 

will be used for all aquifer layers), an element number can not be 

listed more than once, otherwise an error will occur.  If ZEXTENT 

is set to 0 (i.e. different zone numbering is specified for each 

aquifer layer), then same element number can be listed more than 

once but the layer numbers (specified in the variable LAYER that 

will be explained later in this section) corresponding to this 

element should be different. 
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LAYER Aquifer layer number at which element IE is located.  If 

ZEXTENT is set to 1, skip this variable.  Otherwise incorrect zone 

numbers will be assigned to elements.  If ZEXTENT is set to 0, 

then LAYER has to be specified. 

ZONE Zone number which element IE (at layer LAYER if ZEXTENT is 

set to 0) belongs to.  By default all elements at all aquifer layers 

are assigned the zone number −99.  Elements can be assigned any 

integer zone numbers except −99.  The zone numbers do not have 

to be sequential. 

ZPRINT Zone numbers for which detailed water budget will be printed.  

The zone numbers listed under this variable must be one of the 

numbers that are listed under variable ZONE or −99.  If a zone 

number that was not specified under ZONE is listed, a warning 

message will be generated and print-out for this zone will be 

suppressed. 
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4.2. Output Files 

Z-Budget creates two output files: the standard output file named 

ZBUDGETMESSAGES.OUT and the budget file that lists the detailed water budget 

information for the zones for which water budgeting is requested.  Depending on the 

options specified in the main input file, the budget file can be an ASCII text file or a DSS 

file. 

 

Standard Output File (ZBudgetMessages.out) 

This file lists information about the execution of Z-Budget.  Errors or warning 

messages are printed in this file as well as the information for the successful completion 

of the program.  Always check this file to make sure that the Z-Budget run was 

successful. 

 

Water Budget Output File 

This file lists the detailed inflow and outflow terms to and from each of the zones 

for which a print-out is requested in the main control file.  It can be an ASCII text or a 

DSS file depending on if an output DSS file name has been specified in the main control 

input file.  If no DSS file name as for output file is specified, then an ASCII output text 

file is created.  The name of this file is created by replacing the extension of the binary 

file name by the new extension “.BUD”.  For instance, if the name of the binary file is 

ZB.BIN, then the tabulated water budget values will be listed in the file ZB.BUD.   

For each zone for which a print-out is obtained, the number of the inflow/outflow 

columns depends on the sources/sinks and types of boundary conditions included in the 
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simulation as well as the number of adjacent zones to the particular zone in hand.  Some 

inflow/outflow components are common for all applications, whereas others are 

application specific.  Table 4 is a list of all the inflow/outflow components that are 

addressed by IWFM and may appear in the zonal water budget tables.  Due to the 

physical nature of these flow components, some of them can only be considered as an 

inflow to a zone, some of them are only outflow from a zone and some of them can be 

both inflow and outflow to or from a zone.  This characteristic of each of the flow 

component is also listed in Table 4.  A portion of a representative water budget output for 

a two subregion (subregions 1 and 2) system is shown below. 

If a file name for DSS output file is specified in the main control input file, then 

the zonal flow terms are written to this DSS file using pathnames that are generated by Z-

Budget.  It should be noted that DSS file output option is available only if the Simulation 

was run using time-tracking option.  The parts of the pathnames stored in the DSS output 

file are specified as follows: 

Part A: 

 IWFM_Z-BUDGET 

Part B: 

 Zone: XXX where XXX is the zone ID 

Part C: 

 VOLUME



 

 38

 

 



 

 39

Part D: 

 Start date of the time series depending on the time step used in the Simulation 

and the value of the BDT variable (starting date and time for the printing of 

zonal flow terms) set in the Z-Budget main control input file 

Part E: 

 Time step used in the Simulation 

Part F: 

 Depending on the flow process, one of the items listed below: 

i. GW STORAGE_IN (_OUT)  

ii. STREAMS_IN (_OUT) 

iii. TILE DRAINS_IN (_OUT) 

iv. SUBSURFACE IRRIGATION_IN (_OUT) 

v. SUBSIDENCE_IN (_OUT) 

vi. NET DEEP PERCOLATION_IN (_OUT) 

vii. SPECIFIED FLOW BC_IN (_OUT) 

viii. SPECIFIED HEAD BC_IN (_OUT) 

ix. RATING TABLE BC_IN (_OUT) 

x. GENERAL HEAD BC_IN (_OUT) 

xi. SMALL WATERSHED BASEFLOW_IN (_OUT) 

xii. SMALL WATERSHED PERCOLATION_IN (_OUT) 

xiii. DIVERSION RECOVERABLE LOSS_IN (_OUT) 

xiv. BYPASS RECOVERABLE LOSS_IN (_OUT) 

xv. LAKES_IN (_OUT) 
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xvi. PUMPING BY ELEMENT_IN (_OUT) 

xvii. PUMPING BY WELL_IN (_OUT) 

xviii. VERTICAL FLOWS_IN (_OUT) 

xix. FLOW FROM ZONE XXX_IN (_OUT) 

xx. DISCREPANCY(IN-OUT) 
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