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1. Introduction

The Integrated Water Flow Model (IWFM) is a fully documented FORTRAN-
based computerized mathematical model that simulates ground water flow, stream flow,
and surface water — ground water interactions. IWFM was developed by staff at the
California Department of Water Resources (DWR). IWFM is GNU licensed software,
and all the source codes, executables, documentation, and training material, are freely
available on DWR’s website. The model was first released to the public by DWR in
2003 as IGSM2 (Integrated Groundwater-Surface water Model version 2). IGSM2 itself
was a completely revised version, in theory and code, of IGSM which was originally
developed in 1990 for a group of State and local agencies in California (including DWR).
This document reviews in detail the principles, theories, and assumptions that form the

engine for IWFM.

1.1. Overview of IWFM Theoretical Documentation

Chapter 1 of this document reviews the history of IWFM, and briefly explains the
model features.

In Chapter 2, the conservation equations that are used to model the hydrological
processes simulated in IWFM are detailed. The hydrological processes that are simulated
in IWFM are the groundwater heads in a multi-layer aquifer system, stream flows, lakes
(open water bodies), direct runoff of precipitation, return flow from irrigation water,

infiltration, evapotranspiration, vertical moisture movement in the root zone and the
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unsaturated zone that lies between the root zone and the saturated groundwater system.
The interaction between the aquifer, streams and lakes as well as land subsidence, tile
drainage, subsurface irrigation and the runoff from small watersheds adjacent to model
domain are also modeled by IWFM. Mathematical models that are used for each of the
above processes are developed and discussed thoroughly in this chapter.

Chapter 3 details the numerical methods used in IWFM to solve the differential
equations that model the hydrological processes listed in Chapter 2 and the interactions
between them. The methods used to store large matrices in a computer-memory efficient
way is also described in this chapter. Finally, techniques that are used to calculate
parameter values at finite element nodes based on values measured only at a few
locations are discussed.

In Chapter 4, the demand, simulation of water supply and water allocation process
are discussed. This chapter is integral to understanding one of the main objectives of the
model; simulating water supply for the purpose of meeting a demand. Explanation of the
land use approach in the model, and allocation of water based on land use needs are
included in this chapter. The methods used to adjust water supply in order to meet the

demand are also discussed.

1.2. History of IWFM Development

IWFM was first released by DWR to the public as IGSM2 in December 2002. In
September 2005 the name IGSM2 was changed to IWFM to avoid confusion with

another model IGSM (same acronym but a different code and theoretical basis); versions
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of IGSM are still in use today. Additional details can be found in Appendix B. IGSM2
Version 1.0 was made available to the public in December 2002. IGSM2 Version 1.01
which included minor corrections was released shortly after, in January 2003. IGSM2
Version 2.0 and Version 2.01 were released in December 2003 and March 2004,
respectively. Version 2.0 incorporated more robust solution techniques, new features and
improved output files, whereas Version 2.01 included minor corrections. Later, IGSM2
Version 2.2 which included a new zone budgeting post-processor was released in
February 2005. IGSM2 Version 2.3, which was renamed as IWFM Version 2.3, was
released in September 2005 and included minor additional features and modified output
files compared to IGSM2 Version 2.2. IWFM Version 2.4 that included a modified
methodology for routing soil moisture in the root zone was released in May 2006. IWFM
Version 3.0 mostly included structural changes in the source code that was the start of an
effort to move to an object-oriented programming paradigm. Time-tracking simulations,
option to print groundwater heads and subsidence values in a Tecplot-compliant format to
create animations, and new features in the simulation of the root zone soil moisture were
part of this version. IWFM Version 3.0 was released in February 2007. Version 3.02,
which was released to the public in April 2010, included a new solver that uses the
generalized preconditioned conjugate gradient method for shorter run-times,

modifications to the source code to increase run-time efficiencies, and bug fixes.

1.3. Summary of Current Model Featuresin IWFM

IWFM is a water resources management and planning model that simulates
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groundwater, surface water, groundwater-surface water interaction, as well as other
components of the hydrologic system (Figure 1.1). Preserving the non-linear aspects of
the surface and subsurface flow processes and the interactions among them is an
important aspect of the current version of IWFM.

Simulation of groundwater elevations in a multi-layer aquifer system and the
flows among the aquifer layers lies in the core of IWFM. Galerkin finite element method
is used to solve the conservation equation for the multi-layer aquifer system. Stream
flows and lake storages are also modeled in IWFM. Their interaction with the aquifer
system is simulated by solving the conservation equations for groundwater, streams and
lakes simultaneously.

An important aspect of IWFM that differentiates it from the other models in its
class is its capability to simulate the water demand as a function of different land use and
crop types, and compare it to the historical or projected amount of water supply. The
agricultural water demand is computed for ponded and non-ponded crops using user-
specified parameters for farm and crop management practices. Ponded crops include rice
grown and decomposed using different management practices (namely rice with flooded
decomposition, non-flooded decomposition or no decomposition at all). Water demands
for seasonal and permanent refuges are also simulated as ponded crops since the
management of these lands are very similar to those of rice fields. Non-ponded crops
include all other crops that are not grown in standing water. Urban water demand is
computed based on population and per-capita water usage. The user can specify stream
diversion and pumping locations for the source of water supply to meet the urban and

agricultural water demand. User-specified diversion and pumping amounts can be
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Figure 1.1 Hydrologic processes modeled in IWFM



distributed over the modeled area for agricultural irrigation or urban municipal and
industrial use. Based on the precipitation and irrigation rates, and the distribution of land
use and crop types over the model domain, the infiltration, evapotranspiration and surface
runoff can be computed. Vertical movement of the soil moisture through the root zone
and the unsaturated zone that lies between the root zone and the saturated groundwater
system can be simulated, and the recharge rates to the groundwater can be computed.

As mentioned, IWFM has the capability to compare the agricultural and urban
water demands to the actual water supply (in terms of stream diversions and pumping)
that is available in the modeled region from a historical or a projected point-of-view. If
there is discrepancy between the water demand and the water supply (i.e. if there is a
supply shortage or a supply surplus), IWFM can be used to adjust the water supplies
automatically to minimize this discrepancy. The user can choose to have only diversions,
only pumping amounts or both diversions and pumping adjusted to minimize the
difference between the computed demand and the water supply.

IWFM allows the user to divide the entire model area into smaller sub-regions.
This division can be based on hydrologic and geologic properties (e.g. individual
watersheds) or on the management practices (e.g. water districts). The division of the
model into smaller regions does not affect the mass distribution over the entire regions;
the sub-regions are used solely for the grouping and reporting of the simulation results.
The input data required by IWFM is independent of particular sub-regions. The details
about the specific data requirements for IWFM are listed in the User’s Manual that

accompanies this document.
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This documentation discusses the theory and methodology used in IWFM Version
4.0. Figure 1.2 is a general flowchart of the current version of IWFM. As new versions

come online, revisions and additions will be made to this documentation.
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Figure 1.2 General flowchart of IWFM (continued on next page)
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Figure 1.2 General flowchart of IWFM (continued)
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Figure 1.2 General flowchart of IWFM (continued)
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2. Hydrological Processes Modeled in IWFM

In the core of IWFM lies the simulation of regional groundwater heads. 1n natural
hydrological systems the regiona groundwater interacts with other components of the
hydrologic cycle. As precipitation falls on the ground surface, it infiltrates into the soil at
arate that is dictated by the soil type, ground cover and soil moisture. The moisture in
the top soil moves downward as well as it is taken out of the soil by vegetation. The
downward-moving soil moisture travels through the unsaturated zone of the soil before it
replenishes the groundwater.

If the infiltration capacity of the sail is less than the precipitation rate, the portion
of the precipitation that is in excess of infiltration becomes surface runoff and contributes
to streams and large bodies of water such as lakes. In wet periods, streams act as water
sources for the aquifer system whereas in dry periods they drain water away from the
aquifer. Similarly, large bodies of water, such as lakes, affect the groundwater heads
during wet and dry periods. IWFM models groundwater heads, stream flows and lake
storage simultaneously as well as other components of the hydrologica cycle discussed
above in order to simulate the interactions between these hydrological components
accurately.

In this chapter, the hydrological processes that are simulated in IWFM and the
theoretical background of the simulation methods along with the accompanying
simplifications and assumptions are detalled. The equations used to simulate the

interactions among each of these hydrological components are also explained.
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2.1. Groundwater Flow

IWFM can simulate horizontal and vertical groundwater flow in any multi-layer
aquifer system that includes a combination of confined, unconfined and leaky layers.
These layers may be separated by aquitards or aquicludes (Figure 2.1). Table 2.1 givesa

definition for each of these aquifer types. IWFM is also capable of simulating the change

Ground Surface

" eakege  ConfinedAquifer |

Bedrock

| LEGEND |
B Aquiclude
1 Aquitard
Aquifer
1 Bedrock

Figure 2.1 Multi-layer aguifer system
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Layer Type

Layer Description

Confined aquifer

Unconfined aquifer

Leaky aquifer

Aquiclude

Aquitard

Aquifer bound above and below
by impervious surfaces

Aquifer with afree water surface as
the upper boundary

Aquifer losing/gaining water through an
aquitard that bounds the aquifer above/below

Formation that may contain water, but unable
to transmit significant quantities

Semi-pervious/leaky formation

Table2.1 Typesof aquifer layers and their descriptions

in the aquifer layer types (for instance, a confined aquifer becoming unconfined) as the

groundwater head levels fluctuate. The three-dimensional nature of the flow is simulated

by a quasi three-dimensional approach. In this modeling approach, the depth-integrated

groundwater flow equation is solved for each aquifer layer in order to compute the two-

dimensional groundwater head field. Vertical flow to and from each layer is computed

through approximated |eakage terms that are treated as individual head dependent sources

or sinks.

The equation for the conservation of mass at a cross-section of an aquifer layer is

given as
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where

ash -
%+V-q=luqu+ldqd+qo—qw

Qsi nt

+3(X—Xg, Y —Ys) A

+5(X Xy Y~ Y|k)—
(2.1)

+6(X_Xtd’y_ytd)_

S = storativity, (dimensionless). It is equal to the storage coefficient
S, for a confined aquifer and specific yield, S, for an unconfined
aquifer;

h = groundwater head, (L);

q = specific discharge field, (L%/T);

Qu = rate of flow into the aguifer layer from the upper adjacent layer,
(L/T);

u = indicator function for top aquifer layer, (dimensionless);

1 if layer is not top aquifer layer

0 if layer istop aquifer layer |

(o = rate of flow into the aquifer layer from the lower adjacent layer,
(L/T);

lg = indicator function for bottom aquifer layer, (dimensionless);

1 if layer is not bottom aquifer layer

0 if layer is bottom aquifer layer

2-4



Xs
Ys
Qsi nt

As

Xik

Yik
Qlki nt

Ak

Xtd

Ytd

A

Co

O

dirac deltafunction, (dimensionless);

x-coordinate of a stream location, (L);

y-coordinate of a stream location, (L);

stream-groundwater interaction (see the discussion on stream
flows), (L¥/T);

effective area of the stream through which stream-groundwater
interaction occurs, (L?);

x-coordinate of alake location, (L);

y-coordinate of alakelocation, (L);

lake-groundwater (see the discussion on lakes), (L3/T);

effective area through which lake-groundwater interaction occurs,
(L2):;

x-coordinate of atile drain or subsurface irrigation system, (L);
y-coordinate of atile drain or subsurfaceirrigation system, (L);

tile drain outflow from or subsurface irrigation inflow into the
groundwater system, (L¥/T);

effective area through which tile drain outflow or subsurface
irrigation inflow is occurring, (L2);

other sources/sinks such as pumping, recharge, subsurface inflow
from adjacent small watersheds, etc., (L/T);

rate of flow into storage due to the compaction of interbeds, (L/T);
del operator, (1/L);

horizontal x-coordinate, (L);
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y horizontal y-coordinate, (L);

t

time, (T).

The value of Sqfor a confined aquifer is different than its value for an unconfined
aquifer. To mode the changing aguifer conditions (e.g. a confined aquifer becoming
unconfined), Sq is kept in the time-differential term in equation (2.1). Using Darcy’s

eguation, one can express the specific discharge in terms of the groundwater head as

g=-TVh (2.2)
where
Kb for confined aquifer
T = transmissivity, (L¥T) =
K(h-z4) for unconfined aquifer
K = saturated hydraulic conductivity of the aquifer material, (L/T);
b = thickness of the confined aquifer layer, (L);
h = groundwater head at the unconfined aquifer, (L);
Za = elevation of the bottom of the unconfined aquifer layer, (L).

In order to define the rate of flow into the aquifer layer from adjacent upper and
lower layers, two cases have been considered: (i) adjacent aquifer layers are separated by

an aquitard, and (ii) there is not an aquitard separating the adjacent aquifer layers.

2.1.1. Aquifer Layers Separated by an Aquitard

For this case, consider Figure 2.2 where a system of an aquifer layer, the adjacent

upper layer and the aquitard separating these two layers is depicted. Bear and Verruijt
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upper adjacent agquifer layer

Z
aquifer layer Zp

datum

Figure 2.2 Schematic representation of two aquifer layers separated by
an aquitard

(1987) define an aguitard as a geohydrologic layer whose permeability is at least one
order of magnitude smaller than that of the adjacent aquifer layers. Assuming that the
aquitard is saturated throughout its thickness, the flow in the aquitard is essentially

vertical and its storageis negligible, the vertical flow can be expressed as (Bear, 1972)

du = —E—,LI‘JJAh =-L,Ah (2.3
where
K'u = vertical hydraulic conductivity of the aquitard between the aquifer
layer and the upper adjacent layer, (L/T);
b, = thickness of the aquitard between the aquifer layer and the upper
adjacent layer, (L);
Ah = head difference between the top and the bottom of the aquitard,

(L),
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Ly = leakage coefficient between the aquifer layer and the upper
adjacent layer, (1/T).

Therefore, from equation (2.3), the leakage coefficient, L, is expressed as

L, =—" (2.4)

The head difference, Ah, between the top and the bottom of the aquitard depends
on the hydraulic head in the aguifer layer and the upper adjacent aquifer layer (Figure
2.2). It can bewritten as

h—h, if h>z, ; h;>z
zp—hy if h<zy ; hy>z

Ah = _ (2.5)
h—-z, if h>xz, ; hy=z
0 if h<z, ; hy=z

where

h = groundwater head at the aquifer in consideration, (L);

hy = groundwater head at the upper adjacent aquifer, (L);

Zy = bottom elevation of the aquitard, (L);

z = top elevation of the aquitard, (L ).

Similarly, the flow rate into the aquifer layer from alower adjacent aquifer that is
separated by an aquitard can be expressed as

qq =—L4AD (2.6)
where

Lqg = leakage coefficient between the aquifer layer and the lower

adjacent layer, (1/T);
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Ah = head difference between the top and the bottom of the aquitard that
separates the aquifer and the lower adjacent aquifer, (L).

The leakage coefficient and head difference in equation (2.6) is given,

respectively, as
Lg=Kd (2.7)
by

h—hd if hZZt ;hdZZb
zi—hy if h=z ; hy>z,

Ah= _ (2.8)
h—-z, if h>z; ; hy<zy

0 if h=z ; hy<z,
where

K'd = vertical hydraulic conductivity of the aquitard between the aquifer
layer and the lower adjacent layer, (L/T);

by = thickness of the aquitard between the aquifer layer and the lower
adjacent layer, (L);

h = groundwater head at the aquifer layer in consideration, (L);

hy = groundwater head at the lower adjacent aquifer layer, (L).

Note that, in equation (2.8), z; and z, represent the top and bottom elevations of

the semi-confining layer that underlies the aquifer layer in consideration.

2.1.2. Aquifer Layersthat are not Separated by an Aquitard

For the second case where two adjacent aquifer layers have vertical hydraulic

conductivities that have the same order of magnitudes with no aquitard separating them,

2-9



consider Figure 2.3. Due to the continuity of the vertical flow at the interface between
two layers, one can write

Ky K

dy =—bu/2Ah1=—%Ah2 =—-L,Ah (2.9
and
Ah = Ahq + Ahy (2.10)
where
Ky = vertical hydraulic conductivity of the upper adjacent aquifer layer,
(L/T);
by, = thickness of the upper adjacent aquifer layer, (L);
K = vertic hydraulic conductivity of the aguifer layer in
consideration, (L/T);
b = thickness of the agquifer layer in consideration, (L);
h = groundwater head at the aquifer layer in consideration, (L);

bu KU hd

%/2 Ay
:[b/ 2 Ahy

datum

Figure 2.3 Schematic representation of two aquifer layersthat are not
separated with an aquitard
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hy = groundwater head at the upper adjacent aquifer layer, (L);
Ly = leakage coefficient between the aquifer layer and upper adjacent
aquifer layer, (1/T);
Ah = head difference between the aquifer layer and the upper adjacent
aquifer layer, (L).
Substituting equation (2.9) into (2.10) for Ah; and Ah, and solving for the leakage
coefficient, L,, one obtains the harmonic mean of the leakage coefficients of the aquifer
layer in consideration and the upper adjacent aquifer layer:

Lo 1 (2.11)

u
O.S[bu + bj
K, K
Also, the head difference between two aquifer layers can be expressed similar to
equation (2.5) as

h—-h, if hxz; h;>z
zix—hy if h<zg; hy>z

Ah = . (2.12)
h—-z, if hxz; h,=2
0 if h<zg; hy=z
where
Zk = elevation of the interface between the adjacent aquifer layers, (L).

A similar expression can be obtained for the leakage coefficient and the head
difference between the aquifer layer and the lower adjacent aquifer layer when they are
not separated by an aquitard as

Lg= T (213)

O.S(bd + bj
Ky K
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h—hd if hZZk ; hdZZk
z,—hg if h=z, ; hy>z

Ah=JTKTTd ko A=k (2.14)
h—-z, if h>z, ; hy<z

0 if h=Zk ; hd<Zk
After substituting equations (2.2), (2.3) and (2.6) into (2.1) and rearranging, one

obtains the groundwater flow equation that is used in IWFM:

0=95h ¢ (T Vh)+1,L,Ah" +1,L AR —q, +0g

ot
Qsint
As
Qlki nt
Alk

Q 2.15
_S(X_Xtdiy_ytd)A_td (215)
td

—8(X—X5,Y—Vs)

_B(X_Xlk’y_ylk)

where the terms Ah" and Ah? are introduced in order to differentiate between the head
difference between the aquifer and the upper adjacent layer, and the head difference
between the aguifer and the lower adjacent layer, respectively. Based on the stratigraphic
characteristics of the aguifer system, equations (2.4) and (2.7) are used for leakage
coefficients when adjacent aquifer layers are separated by an aquitard. Equations (2.11)
and (2.13) are used when adjacent layers are not separated by an aguitard.

Equation (2.15) is a partia differential equation that models unsteady
groundwater flow in a multi-layer aguifer system that consists of confined and/or
unconfined layers. These layers may be separated by semi-confining layers. Equation
(2.15) isnon-linear if the aquifer layer is unconfined and linear if it is confined. Equation
(2.15) also takes into account the effect of aquifer interaction with streams and lakes, and

the effect of tile drainage and subsurface irrigation on the groundwater heads.
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To define a well-posed problem, equation (2.15) should be coupled with initial
and boundary conditions for each aquifer layer. The boundary conditions that can be
defined in IWFM are (i) specified flux (Neumann), (ii) specified head (Dirichlet), and

(iii) general head boundary conditions.

2.2. TileDrainageand Subsurfacelrrigation

Tile drainage is often used in farm lands in order to increase the groundwater
drainage where the natural drainage of the soil is not fast enough to maintain desired
agricultural conditions. Tile drains are located beneath the surface of the soil. The term
tile drain is used since they are in the form of clayware pipes, which are made from clay
tiles (Smedema and Rycroft, 1983). Tile drains are used for the drainage of water applied
to agricultural lands for the following reasons. (i) they do not interfere with farming
operations since their location is beneath the surface, and (ii) there is no loss of farming
area due to the drainage system (Smedema and Rycroft, 1983; Luthin, 1973). Figure 2.4
shows a schematic representation of atile drain.

IWFM can aso simulate the effect of subsurface irrigation on the groundwater
heads. Figure 2.5 illustrates subsurface irrigation, where the direction of flow isfrom the
irrigation pipes to the groundwater. Subsurface irrigation is beneficia for deep rooted
crops and treesin arid areas to avoid excessive evaporation.

Simulations of tile drains and subsurface irrigation are similar except that for tile
drains flow direction is aways from groundwater to tile drain, whereas for subsurface

irrigation system the direction is always from the irrigation pipe towards the
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ground surface

water table tiledrain

N /

Ne

Zyy

, datum

Figure 2.4 Schematic representation of atiledrain

groundwater. The difference of the groundwater head and tile drain elevation (or head at
the subsurface irrigation pipe) is multiplied by a conductance term to approximate the

flow between groundwater and tile drain (or subsurface irrigation pipe):

Qi =Cu (th - h) (2.16)
where
Qu = flow between groundwater and tile drain or subsurface irrigation
pipe, (L3/T);
Cad = conductance of the interface materia between the tile

drain/subsurface irrigation pipe and the aquifer material, (L/T);

Zg = elevation of the tile drain or the head at the subsurface irrigation
pipe, (L);
h = groundwater head at the location of tile drain or subsurface

irrigation pipe, (L).
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ground surface

XXX o
Sub-irrigation pipe
— water table
AR S
Zyg =
h
datum

Figure2.5 Flow from a subsurface irrigation pipe to the groundwater

The flow term, Qu, is negative in modeling tile drains and positive in modeling
subsurface irrigation.

The conductance term, Ciq, can be expressed as

Ca = %Am (2.17)
td
where
Ka = hydraulic conductivity of the interface material between the tile
drain/subsurface irrigation pipe and aguifer material, (L/T);
g = thickness of the interface materia, (L);
Ay = effective area through which tile drain outflow or subsurface

irrigation inflow is occurring, (L?).
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If dependable field measurements are available, they may be used to calculate the
conductance, Cy. In many cases, however, a conductance value must be chosen

somewhat arbitrarily and adjusted during model calibration.

2.3. Land Subsidence

IWFM accounts for changes in storage due to land subsidence. The change in soil
structure, which causes subsidence, primarily occurs from pumping large amounts of
groundwater in agiven area. Modeling land subsidence is an important feature of IWFM
since storage changes impact the available water supply.

The change in storage can be temporary or permanent, depending upon the
amount of stress placed on the soils. A temporary change in storage means that the soils
were not permanently displaced and the easticity of the soil is preserved. Given the
compaction is elastic, the soil may still expand. Extraction of large amounts of water
from the aquifer may increase the effective stress of the soils beyond a threshold value,
causing permanent displacement of soils and a permanent decrease in the storage capacity
of the aquifer.

IWFM calculates the groundwater head changes due to subsidence in relation to
the vertica compaction of interbeds. Interbeds are lenses that have poor permeability
within a relatively permeable aquifer. The following three items are used as criteria
when defining an interbed (Leake and Prudic, 1988):

e The hydraulic conductivity of the interbed is significantly lower than the

hydraulic conductivity of the aquifer material.
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e The lateral extent of the interbed must be small enough so that it is not
considered a confining bed that separates adjacent aquifers.
e Theinterbed thickness must be small in comparison to its lateral extent.
Land subsidence is a function of the change in the effective stress, elastic and
inelastic specific storages of the interbed, and the initial interbed thickness, given that the
geostatic and the hydrostatic pressures over the interbed are constant. The elastic change

in the interbed thickness can be written as (Riley, 1969; Helm, 1975)

Abg, = A—pssebo (2.18)
Tw
where

Abe = elastic change in interbed thickness, positive for compaction and
negative for expansion, (L);

Ap = change in effective stress, positive for increase and negative for
decrease, (F/L);

Yw = unit weight of water, (F/L3);

Se = elastic specific storage, (1/L);

b, = the initial thickness of theinterbed, (L).

For an interbed located in an aquifer where geostatic pressure is constant, the
change in effective stress as a function of the change in head can be expressed as (Poland

and Davis, 1969)
Ap =-y,,Ah (2.19)

where
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Ah = change in head; positive for increase and negative for decrease in
head, (L).
Substituting (2.19) into (2.18), one can express the change in interbed thicknessin
terms of changein the head as
Abg, =—-AhS_b, (2.20)
Similarly, inelastic change in the interbed thickness can be approximately related

to the change in head at an aquifer where geostatic pressure is constant as (Leake and

Prudic, 1988)
Aby =—AhSb, (2.21)
where
Aby = inelastic change in interbed thickness, positive for compaction and
negative for expansion, (L);
Sy = inelastic specific storage, (1/L).

The total compaction, i.e. elastic and inelastic compaction, can be computed by
adding the elastic and inelastic compactions computed by equations (2.20) and (2.21).

Equations (2.20) and (2.21) require that the geostatic pressure in the aquifer is
constant. Geostatic pressure is constant in confined aquifers but it changes in an
unconfined aquifer as the water table fluctuates. In IWFM it is assumed that the change
in geostatic pressure is negligible in unconfined aguifers so that equations (2.20) and
(2.21) can be used for modeling the land subsidence in unconfined as well as confined
aquifers. Normally, the compaction is less for an unconfined aquifer compared to the

compaction in a confined aquifer. By using the assumption that equations (2.20) and
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(2.21) are applicable to unconfined aguifers, the actua compaction in unconfined

aquifersis slightly overestimated in IWFM.

2.3.1. Flow into Groundwater Storage dueto Land Subsidence

The groundwater flow equation used in IWFM is given in equation (2.15). The
first term on the right hand side of equation (2.15) represents the flow rate into
groundwater storage due to fluctuating head values. To incorporate the flow into storage
due to interbed compaction, an additional term, gy, has been included in equation (2.15).

This additional term can be expressed as (Leake and Prudic, 1988)

0 =82 (222
where
Od = rate of flow into or out of storage due to compaction or expansion
of interbeds, (L/T);
S = skeletal storativity of interbeds, (dimensionless).

The skeletal storativity value in (2.22) varies between the elastic and inelastic
specific storage values multiplied by the interbed thickness, b,, depending on the relation

of the head to the pre-consolidation head. If the head is above the pre-consolidation
head, SS takes the value of elastic specific storage multiplied by the interbed thickness

and if the head falls below the pre-consolidation head, it takes the value of inelastic

specific storage multiplied by the interbed thickness:
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S.b, if h>h,

S= (2.23)
Sb, if h<h,

where

he = pre-consolidation head.

The pre-consolidation head value is also adjusted during the simulation period. It
is assigned the most recent lowest head value if the head falls below the pre-compaction
head. Equations (2.15) and (2.22) revea that when the rate of change of groundwater
head is positive (i.e. increasing groundwater head) flow out of the storage will occur due
to expansion of the interbeds. If the rate of change of head is negative (i.e. decreasing
groundwater head) flow into the groundwater storage will occur due to the compaction of
the interbeds. If the head falls below the pre-consolidation head, h., the compaction is
irreversible. If the head stays above the pre-consolidation then the interbeds will expand

again upon recharge of the aquifer.

2.4. Initial and Boundary Conditions

The solution of the groundwater flow equation (2.15) requires specification of
boundary and initial conditions, which constrain the problem and make solutions unique.
Initial and boundary conditions are not only necessary in solving the groundwater
equation, but the accuracy is important as well. If inconsistent or incomplete boundary

conditions are specified, the problem isill defined (Wang and Anderson, 1982).
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24.1. Initial Conditions
The solution of equation (2.15) requires the knowledge of groundwater head

values at the beginning of the ssimulation period. Therefore, h(x,y,t = 0) needs to be

specified for all aquifer layers by the user.

2.4.2. Specified Flux (Neumann)

A Neumann boundary condition is applied when the flow is known across
surfaces bounding the domain. Given a specified flux boundary, the flux normal to the

boundary is prescribed for all the points of the boundary as a function of location and

time:

ar = —Tg—:=f (x,y,1) (2.24)
where

q- = specified flux at the boundary, (L%T);

T = transmissivity, (L%T);

h = groundwater head at the boundary, (L);

n = distance that is measured perpendicular and outward to the

boundary, (L);
f(x,y,t) = known function for al points on the part of the boundary where

flux is specified, (L¥T).
This type of boundary condition typicaly occurs in an aquifer adjacent to

bedrock, where there is no flux. Aquifers adjacent to another source of water with fixed
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flux into or out of the aquifer system also involve this type of boundary condition.

2.4.3. Specified Head (Dirichlet)

A Dirichlet boundary condition is set when the hydraulic head is known for
surfaces bounding the flow domain. This type of boundary condition assumes a constant
head value for the designated points of the boundary. For instance, a specified head
boundary may occur when the flow domain is adjacent to an open body of water. At
every point on this type of boundary, the piezometric head is the same as the head in the
aquifer at the point adjacent to it. In groundwater flow, this occurs at the interface

between a saturated porous medium and ariver, lake or sea (Bear, 1972).

2.4.4. General Head

The genera head boundary condition is applied when the head value is known at
a distance from the boundary nodes. The known head value is usually at a body of water
located at a given distance from the boundary nodes. It can also come from a subsurface
source, such as the groundwater head at a nearby groundwater basin. The general head
boundary inflow at afinite element node can be expressed as

KrAr

Qerie = T(hGHB - hr) (2.25)
where

Qe = general head boundary flow, (L*/T):;

Kr = hydraulic conductivity of the aquifer at the boundary, (L/T);
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Ar = cross-sectional area at the boundary that flow passes through, (L?):;

dr = distance between the boundary and the location of the known head,
(L);

hr = head value at the boundary, (L);

heus = head at the nearby surface water body or aquifer, (L).

2.5. Stream Flows

Streams are an important component of the hydrologica cycle. During the periods when
groundwater heads are low, they contribute water to the groundwater and during periods
when the groundwater heads are high, they drain water away (Figure 2.6). In regions
where agricultural and urban development is high, they are also used as a source of water
supply. A portion of the water that is diverted from the streams and used to meet
agricultural and urban water demands seeps into the groundwater at locations far from
streams. This further complicates the stream-groundwater system.

IWFM incorporates a stream routing package that simulates the stream flows as a
function of flow from the upstream tributaries and reaches, surface runoff, agricultural
and urban return flow, diversions and bypasses, flow from upstream lakes and the
exchange of water between the stream and the groundwater. The stream system is
divided into segments that are termed stream reaches. Each reach consists of multiple
stream nodes. Each stream node represents a section of the stream reach which is termed
as stream segment.  Stream flows are simulated at each stream node. An example of the

representation of a natural stream system by stream nodes and stream segments is
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Figure 2.6 Stream-groundwater interaction scenarios
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depicted in Figure 2.7. In Figure 2.7.c, stream segments that are represented by stream
nodes are shown between two consecutive dashed lines. It should be noted that at a
confluence there are as many nodes as the number of stream reaches meeting at the
confluence. Even though stream nodes at a confluence are located at the same
coordinates, the stream segments that they represent are different (Figure 2.7.c).

In simulating the stream flows, IWFM uses the continuity equation, where storage

at stream nodei is assumed to be zero:

0=Qp - Qu (226)
and

Qin=2,Qq + Ry +S + Qs+ Qus + Qg + Qo + Q (2.27)

]

Qout = Quaiv + Quine + Qs (2.28)

Quaiv = Qb + Quiy (2.29)
where

Q, = flow from upstream nodej, (L¥/T);

Rs = surface water return flow from agricultura irrigation and urban

water use, (L¥/T);

S = direct runoff due to rainfall excess and subsurface flow that seeps
onto the ground surface, (L*/T):;

Quws = inflow from the tributaries to the stream node (see small stream
boundary conditions), (L¥/T);

Qos = inflow from bypasses, (L*/T);
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Reach 2
Reach 1

Reach 3

(2) Example of a natural stream system

(c) Stream segments associated with each node

Figure 2.7 Representation of a natural stream system by stream nodes
and stream segmentsin IWFM
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Qu = inflow from tile drains, (L¥/T);
Qko = inflow due to lake overflow (see the discussion on lakes for the

computation of this term), (L¥/T);

Qn = inflows other than those listed above, (L3T);

Qv = outflow that is diverted as bypass flow, (L3T);

Qdv = flow that is diverted for agricultural and urban water use, (L3T);

Qsnt = rate of water exchange between the stream and the groundwater,
(L3);

QSI = net flow at stream node i that contributes to the flow at the

downstream node, (L*/T).

The number of stream nodes that are considered in the summation term on the
right hand side of equation (2.27) depends on the location of the stream node i (Figure
2.7). If nodei isinthe middle of a stream reach, there will be only one upstream node
from which flow will be contributing to the flow at nodei. On the other hand, if nodei is
located at a confluence, then there will be as many upstream nodes as the number of
upstream reaches meeting at the confluence. As an example, consider node 3 of reach 1
in Figure 2.7.c. Writing equation (2.27) for node 3, only node 2 will appear as upstream
node. On the other hand, writing equation (2.27) for node 10, nodes 4 and 9 will appear
as the upstream nodes.

Substituting equation (2.28) into equation (2.26) and rearranging, one obtains
QS. = Qin + Qpaiv + Qsine =0 (2.30)

In IWFM, stream flows are related to stream surface elevations through a rating
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Curve.
Qs =Qs (hs) (2.31)

where

h = elevation of the stream surface at stream node i with respect to a

common datum, (L).

25.1. Diversionsand Bypass Flows

In general, diversion rates and bypass flows that occur at a stream node are pre-
specified values. In certain occasions bypass flows can aso be specified through a rating
curve that renders them as a function of the stream flow. If there is enough flow at the
stream node so that the total of the diversion and bypass flows can be taken out of the
stream, the pre-specified values remain unchanged. If the stream flow is not enough for
the required diversion and bypass flows, it is necessary to compute how much of the
specified flows can actualy be taken out of the stream. To achieve this, it is assumed
that diversions occur before the bypass flows. After the diversion flows are taken out of
the stream flow, bypass flows are alowed to be taken out of the stream. As such,
defining the required diversion and bypass flow rates as Qgivreq aNd Qureq, respectively,
one can compute the actual diversion and bypass flow rates that take place at stream node
i as

Qdivreq if Qin 2 Qdivreq

Quiv = (2.32)
Qin if Qin < Quivreq
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Qbreq if Q; > Qpreq
Q= (233
Q; if Q; < Qpreg

where
Q; =Qin — Quiv (2.34)
and Qjn is given by equation (2.27). Equations (2.32)-(2.34) revea that diversions and

bypasses are assumed to take place before the stream-groundwater interaction which is

detailed in the following section.

25.2. Stream-Groundwater | nteraction

The stream-groundwater interaction is included in IWFM to capture its effect on
stream flows and groundwater heads. The exchange of water between the stream and the
groundwater along a stream segment can be modeled approximately as (McDonald and

Harbaugh, 1988)

Qane = Cq | max(hg ,hy ) ~max(h,h ) | (2.35)
where

Q4 = stream-groundwater interaction, (L3/T);

C = conductance of the streambed material at stream nodei, (L%T);

hs = stream surface elevation, (L);

h = groundwater head at stream nodei, (L);

2-29



h, = elevation of the stream bottom at nodei, (L);

The conductance of the stream bed material that appear in (2.35) can be expressed

as
Cs =z—qLiWi =};—SAS1 (2.36)
S S
where
K s = hydraulic conductivity of the stream bed materia, (L/T);
dS = thickness of the stream bed material, (L);
L = length of the stream segment represented by stream nodei, (L);
Wi = wetted perimeter, (L);
A?,| = effective area of the stream segment represented by node i through

which stream-groundwater interaction occurs, (L?).

It should be noted that Qg and ASi that appear in equations (2.35) and (2.36) are

the same terms that appear in the groundwater conservation equation (2.15). Stream flow
equation (2.30) is coupled with groundwater conservation equation (2.15) through the
stream-groundwater interaction term, Qgne. In order to compute groundwater heads,
stream flows and stream-groundwater interaction properly, it is necessary to solve
eguations (2.15) and (2.30), simultaneously. The solution methodology used in IWFM

will be discussed in detail later in this document.
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2.6. Lakes

Lakes and similar large water bodies are as important in the hydrological cycle as
the groundwater and streams. Lakes interact with groundwater and streams, and can
affect the groundwater heads and stream flows drastically. For this reason, the capability
of modeling lake storage and its interaction with groundwater and streams has been
included in IWFM. Figure 2.8 shows some of the hydrological components modeled in
IWFM that affect the lake storage.

The conservation equation for lake storage can be expressed as

55, Nik

?_Z(Hki Ak = EVikAlk; — Qiking )—ank —Qinik + Qo =0 (2.37)
i=1

where

Sk =  lakestorage, (L°);

i = lake node that represents an area of lake, (dimensionless);

Nk = total number of lake nodes that represent the entire lake area,

(dimensionless);

Hki = precipitation onto the |ake area represented by nodei, (L/T);

EVik, = evaporation from the |ake area represented by nodei, (L/T);

Qum, =  lake-groundwater interaction, (L°/T);

A, =  lakearearepresented by nodei, (L%);

Quik =  inflow from diversion and bypass flows, (L*/T);

Qnk =  inflow from upstream lakes, (L3T);
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P..... Precipitation Q... Streamflow into lake

E..... Evaporation Q, ... Lake-groundwater interaction
dy .....Thickness of the lake bed

Figure 2.8 Hydrological components that affect |ake storage
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outflow from lake in case lake surface el evation exceeds a pre-

Qiko
specified maximum elevation, (L*/T);

t

time, (T).
As can be seen in equation (2.37), diversion and bypass flows can be set as inflow
to the lake. At a lake node i, evaporation rate is pre-specified as a function of time.

Furthermore, |ake storage is related to the lake surface elevation through arating table:

Sk=Sk(hik) ik <hikg (2.39)
where

hik = elevation of lake surface, (L);

Nikrax = maximum elevation of lake surface, (L).

If the lake surface €evation exceeds the maximum elevation, the excess water
becomes lake outflow, Q.. This outflow can be directed into a stream node or into a

downstream lake.

2.6.1. Lake-Groundwater |Interaction

Similar to stream-groundwater interaction, lake-groundwater interaction can be

expressed as

Quiny; = Cik [max (hlk Noig )— max ( h, Py )} (2.39)
where

Quiny = |ake-groundwater interaction, (L%T);

Cw = conductance of the lake bed material at lake nodei, (L%/T);
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h, = lake surface elevation, (L);
h = groundwater head at lake nodei, (L);
Ngy, = elevation of the lake bottom at nodei, (L);

The conductance of the |ake bed material that appear in (2.39) can be expressed as

|
where
Kiki = hydraulic conductivity of the lake bed material, (L/T);
|
dy;, = thickness of the lake bed material, (L).

It should be noted that Qikin, and A|ki that appear in equations (2.39) and (2.40)

are the same terms that appear in the groundwater conservation equation (2.15). Lake

storage equation (2.37) is coupled with groundwater conservation equation (2.15) through

the lake-groundwater interaction term, Q. In order to compute groundwater heads,

lake storage and |ake-groundwater interaction properly, it is necessary to solve equations
(2.15) and (2.37), simultaneously. The solution methodology used in IWFM will be

discussed in detail later in this document.

2.7. Land Surface and Root Zone Flow Processes

Precipitation is the natural source for the replenishment of groundwater, stream
flows and lake storage. The amount of precipitation that falls directly on the streams and

lakes contributes to stream flow and lake storage immediately. Precipitation that falls on
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the ground surface infiltrates into the soil at a rate dictated by the type of ground cover,
physical characteristics of the soil and the soil moisture content. The portion of the
precipitation that is in excess of the infiltration rate generates a surface flow and runs
towards nearby streams, lakes or other bodies of water in the direction dictated by the
contours of the ground surface. In situations where groundwater table rises high enough
and intersects with the ground surface, the groundwater seeps onto the surface
contributing to the surface flow generated by the precipitation in excess of infiltration
(Dunne, 1978). In IWFM, the surface flow generated through these means is termed as
direct runoff. Direct runoff can also infiltrate into the soil further down the slope or
evaporate before it even reaches a nearby body of water. However, modeling this
complex nature of direct runoff requires highly detailed information on physical
characteristics of the soil, ground cover, topography, evaporation patterns, etc. This
information is generally not available at the scale that IWFM is designed for. Therefore,
the infiltration and evaporation of direct runoff on its course to a nearby body of water
are neglected in IWFM. Instead, once the direct runoff is computed it is immediately
carried to a pre-specified stream location.

Irrigation of agricultural lands and urban outdoors water use also follow similar
infiltration and runoff patterns of precipitation. In IWFM the surface flows generated by
the agricultural irrigation and urban water use is termed as return flow. Return flow
generated by agricultural irrigation runs in the direction dictated by the contours of the
ground surface, whereas return flow generated by the urban water use generally follow
man-made structures. In both cases, IWFM treats return flows similar to the direct runoff

and these flows areimmediately carried to a pre-specified stream location.
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Even though groundwater table can rise and intersect with the ground surface
saturating the entire soil profile, an unsaturated zone generally exists between the ground
surface and the groundwater table. An unsaturated zone is defined as the soil profile
where pore space saturation is less than 100%. The water from precipitation and
irrigation water that infiltrate into the soil have to flow through this unsaturated zone
before reaching the groundwater as recharge. The top layer of this unsaturated zone
designated by the depth of the plant roots through which moisture is drawn out of the soil
is caled the root zone. As moisture in the root zone flows downward due to the
gravitational force, it is aso drawn out of the soil through plant roots for transpiration and
the process of evaporation. The combined processes of plant root uptake for transpiration
purposes and evaporation is termed as evapotranspiration. Figure 2.10 illustrates an
example of a system of root zone and unsaturated zone, and the hydrological processesin
these zones asit ismodeled in IWFM.

To connect the groundwater system with the surface flow processes, simulation of
storage and flow through the root zone and unsaturated zone is necessary. In general,
moisture in the root and unsaturated zones can move in horizontal direction as well asthe
vertical direction. In IWFM, it is assumed that the horizontal movement of the moisture
in the root and unsaturated zones is negligible compared to the vertica movement,
therefore only the flow of the moisture in the vertical direction is addressed. To increase
the accuracy of the ssmulated vertical flow, IWFM has the functionality to separate the
unsaturated zone into multiple layers (Figure 2.10). The moisture that leaves the root

zone and enters the unsaturated zone is termed as deep percolation. The moisture travels

2-36



downward through the unsaturated zone and eventually recharges the groundwater. The
groundwater recharge is named as net deep percolation (Figure 2.10).

The methods that are used to simulate land surface and root zone processes in
IWFM are discussed in detail in a separate document (see DWR, 2012) and will not be
discussed any further here. DWR (2012) details the IWFM Demand Calculator (IDC)
which is aso used as the root zone and land surface flow simulation component in

IWEM.

Precipitation Irrigation

IRRRE

Runoff

1, Xy
O0E Z 0N

7 o R S e R R, U
ﬂ'-:.'h = ;i~vq13fa!ﬁ*.r-:.a ) -r.i.'-“i'};faﬁ '-ﬂ'-' Sardd

Unsaturated Layer 1
: Qout,l = Qin,'2 Dl

Unsaturated Layer 2 Q.u»=Q., j D g
) ) 2

N4

Unsaturated Layer 3 Qout,3 |: net Dp * D3 1

\4

I

l Grou nEwater

Figure2.9 Schematic representation of flow through the root zone and
the unsaturated zone
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2.8. Moisture Routing in the Unsaturated Zone

Moisture routing in the unsaturated zone is performed over a pre-specified
number of unsaturated layers. The simulation of moisture through multiple layers
approximates the vertica movement of water in the physical system more precisely
because of the finer spatial discretization created. The lag between the time when
moisture enters the unsaturated zone above and the time it leaves the unsaturated zone
below can be simulated more accurately.

The methodology for routing moisture through unsaturated layersis similar to that
used in the root zone as described by DWR (2012). The conservation equation for an

unsaturated layer mis

w = Qin,n - Qout,n (2-41)
where

n = unsaturated layer number counting from top down,

(dimensionless);

Dy = thickness of layer n, (L);

0,, = soil moisture in n™ unsaturated layer, (L/L);

Qinn = inflow into unsaturated layer n from layer n-1, (L/T);

Qoutn = outflow from unsaturated layer n to layer n+1, (L/T);

t = time, (T).
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Assuming that the vertical head gradient is unity, using van Genuchten-Mualem

eguation (Mualem, 1976; van Genuchten, 1980) and assuming residual moisture content

is negligible, the flow out of layer n, Qg n, Can be expressed as

Qout,n = Ku,n (2.42)
and
2
v m
eu n % eu n
Kun=Ksn| — 1-|1-| — (2.43)
NTn NTn
m=_"n (2.44)
Ap+1
where
Kun = unsaturated hydraulic conductivity of layer n, (L/T);
Ksn = saturated hydraulic conductivity of layer n, (L/T);
Ntn = total porosity of unsaturated layer n, (L/L);
Aqp = pore size distribution index of unsaturated layer n, (dimensionless).

As an dternative to the van Genuchten-Mualem equation, IWFM can use
Campbell’s approach (Campbell, 1974) to represent the unsaturated hydraulic

conductivity:

0 3+7T
Kuyn= Ks,n[ =0 J ’ (2.45)
NT,n

where the assumption of negligible residual moisture content is applied.
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Equation (2.41), coupled with (2.42), is solved for each unsaturated layer from top
down in a sequential order. At each layer, the inflow term Qin, IS known from the
routing of moisture at the layer above, i.e. Qinn = Qoutn-1. FOr the first unsaturated layer
(i.,e. n=1), Qinnisequal to the deep percolation computed by the root zone component of
IWFM (DWR, 2012). The outflow at the last unsaturated layer is the net deep
percolation into the groundwater system.

The number of layers and their thicknesses are predefined input parameters.
Based on the elevation of the groundwater table, three scenarios can occur for an
unsaturated layer during the simulation period: (i) the total thickness of the layer is
unsaturated; (ii) the groundwater table intersects the unsaturated layer so that the partia
thickness of the layer is saturated and (iii) the layer is occupied completely by
groundwater, and is no longer unsaturated. If the elevation of the groundwater table is
lower than the bottom of the last unsaturated layer, then IWFM re-computes the thickness
of the last layer and extends it down to the groundwater table. If alayer becomes fully
saturated during the simulation period due to the rising groundwater table, the moisture
routing in that unsaturated layer is ceased until the layer is at least partially unsaturated
again. If alayer is partially occupied by saturated groundwater, then the thickness of the
layer, Dy, that appears in equation (2.41) is computed as the unsaturated thickness of
that layer. Therefore, even though the thicknesses of each unsaturated layer are pre-
specified, they are in fact dynamic, and computed internally in IWFM through the

simulation period.
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2.9. Small Watersheds

Small watersheds adjacent to a model area can contribute to surface and
subsurface flows occurring in the model area. To account for the flow contributions of
small watersheds, surface and subsurface flows at these watersheds are simulated with an
approximate method. It is assumed that flow between the small watersheds and the
modeled region is one-way; the direction of subsurface and surface flows is always from
small watersheds into the modeled region.

The surface flow that occurs in a small watershed is assumed to be due solely to

the direct runoff of precipitation:

2
P, At—0.2
sN,zi( W S) A, (2.46)
At P, At+0.8S,

where
Sw = direct runoff from the small watershed, (L%T);
P = precipitation rate at the small watershed, (L/T);
Sw = retention parameter at small watershed modified with respect to the

soil moisture in the unsaturated zone (see previous sections for the
computation of thisterm), (L);

At = time period over which the precipitation rate has occurred, (T);

A, = surface area of the small watershed, (L?).

As described earlier, once the direct runoff is computed the infiltration that occurs

at the small watershed can be computed as

IWfp =(Pw _S\Nr)AW (2.47)
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where

wap = infiltration of precipitation at the small watershed, (L3T).

The vertical movement of moisture in the unsaturated zone at the small watershed
is computed using the methods described in preceding sections and in DWR (2012). The
computed deep percolation, as an outcome of the soil moisture accounting, represents the
inflow to the groundwater storage at a small watershed. The conservation equation for

the groundwater storage at the small watershed is expressed as

ajt”g =Dyp — Qug — Qugs (2.48)
where

Swg = groundwater storage within the small watershed boundary, (L*);

Dwp = net deep percolation, i.e. recharge, to the groundwater storage
within the small watershed domain (computed using the methods
described in the preceding section), (L3/T);

Qu = subsurface outflow from the small watershed that contributes to the
groundwater storage at the modeled area, (L3/T);

Qugs = contribution of groundwater storage to the surface flow at the small
watershed, (L%T);

t = time, (T).

The subsurface flow from the small watershed, Qug, contributes to the

groundwater storage at the modeled area at pre-specified locations. It is approximated as
Qug = CugSug (2.49)

where
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Chwg = subsurface flow recession coefficient, (1/T).
Contribution of the groundwater storage to the surface flow at the small
watershed, Qugs, IS computed as a non-zero value only if the groundwater storage, Syg,

exceeds a predefined threshold value:

Qugs = Cus (Sug ~ Sugt) (2.50)
where

Cws = surface runoff recession coefficient, (1/T);

Swgg = threshold value for groundwater storage within the small watershed

above which groundwater at the small watershed contributes to
surface flow, (L3).
Finally, the total surface flow from the small watershed that contributes to the
surface flows at predefined locations in the modeled areais computed as
Quws = Qugs + Siur (2.51)
where

Quws = total surface flow from the small watershed that contributes to the

surface flowsin the modeled area, (L*/T).
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3. Numerical Methods Used in Modeling of Hydrological Processes

The conservation equations for the hydrological processes modeled in IWFM are
detailed in previous chapter. In order to model the hydrological processes and the
interactions among them, it is necessary to solve these equations simultaneously.
However, since most of these equations are non-linear and the interaction terms are
complex, it is impossible to obtain an analytical solution except for very simple,
hypothetical cases. For this reason, IWFM utilizes numerical techniques to obtain
approximate solutions to the equations listed in the previous chapter. This chapter is

devoted to the explanation of the numerical methods used in IWFM.

3.1. Finite Element Representation of the Groundwater Equation

The conservation equation for the groundwater system is given in the previous

chapter as
0= azih ~V(T Vh)+1,L,Ah" + 1,L4AR" —q, + 0
Qi
_es(x—xs,y—ys)p%:t
Quint
=8 (X =Xy, Y — Yy ) St
1k Ik A|k
Q
_S(X_xtd’y_ytd)A_td (3.1)
td

Equation (3.1) is a partial differential equation that models the unsteady
groundwater head field in a multi-layer aquifer system that consists of confined and/or

unconfined layers. In order to solve this equation, IWFM utilizes the Galerkin finite
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element method to discretize the spatial domain and obtain a set of ordinary differential
equations in which the unknowns are the groundwater heads at a finite number of nodal
points within the model domain. The spatially and temporally continuous groundwater
head field in an aquifer layer m, can be approximated by the head values at discrete nodal

points as (Huyakorn and Pinder, 1983):

iyt)= > oy(xy)hi (1) (3.2)
j=N-(m-1)+1
where
ﬁ(x,y,t) = approximation of h(x, y, t), (L);
®;(x,y) = shape functions, (dimensionless);
hj(t) = nodal hydraulic head values, (L);
m = aquifer layer number, (dimensionless);
N = total number of nodal points in an aquifer layer, (dimensionless).

Equation (3.2) is valid for all layers of an aquifer system that consists of N_

layers. Substitution of (3.2) into (3.1) will generally result in a nonzero residual &:

A

£ = azih —V(T ¥ h)+1,L,ARY +14L4AR" g, + g
Q.
—é‘>(><—><s,y—ys)AS—'snt
Qkint
=B(X =Xy, Y= Y )
Alk
Q 3.3
_S(X_Xtd’y_ytd)A_td (33)
td

According to the Galerkin approach, the inner products of equation (3.3) and the

shape functions w; are required to be equal to zero. That is, equation (3.3) is multiplied by
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the shape functions o (i=N-(m-1)+1---,N-m) for each aquifer layer. The resulting

Nx N, equations are integrated over the entire domain and the result of each of these

integrals is required to be equal to zero (Huyakorn and Pinder, 1983):

o=g£assﬁ —v(T v ﬁ)+ l,L,ARY +1,L4ARY — g, +0q

ot
Q.
—S(x—=x Y-y _xsint.
(X=X, Y=Ys) A
Qlkint
—3(X =Xy, Y — Yy ) kint
( Ik |k) A|k
Qu

(3.4)

_5(x—xtd,y—ytd)A JmidQ

td
where

Q spatial domain of the problem.

It should be noted that the shape functions depend only on the geometric
characteristics of the finite elements, therefore they are the same for each layer, i.e.

('OI :O‘)i+N :“.:Q)i-%—N'(NL—l) Where izl,"',N.

Equation (3.4) is valid for all layers of a multi-layer aquifer system with N_
layers. In fact it is necessary to define equation (3.4) for all layers of the aquifer system
in order to obtain a closed system of equations. Figure 3.1 depicts the node numbering
convention used in IWFM for a hypothetical aquifer system with N layers and each
layer discretized into 2 elements with N=5 nodes. This node numbering convention is
used interchangeably in the rest of this document to express L, L4, hy and hqy (refer to
previous chapter for a definition of the terms) for a node as Ljn, Lj+n, hjn and hjn,

respectively.
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Substituting equation (3.2) into (3.4) and applying Green’s theorem to eliminate

the second order derivatives result in the following equation:

. n.
0:” sz 8851 Jmimde
0 j=N-(m-1)+1 ot
N-m N-m
_” Z T(Div(hj@ ) n dF+” z (hjcoj)-WDidQ
r j=N-(m-1)+1 Q j=N-(m-1)+1
N-m
+H(m—2)ﬂ Z L; nAhj 00,00
Q J=N:(m-1)+1

N-m
+[1-H(m-N_ QJN%QHLHNAh?w,deQ
_ﬂ-qowidQ_’_ﬂ.qsdmidQ
Q Q

_IIS X — Xs'y ys)Qsmt iQ

S

—HS X=X, Y = Y|k)Q|k'm ;dQ

Ik

i=N-(m-1)+1,---,N-m
_HS (X =X,y - ytd)Qtd ;dQ2

Ay m=1--,N_
where
r = boundary of the spatial domain, (L);
n = outward unit vector perpendicular to the
(dimensionless);
N = total number of aquifer layers, (dimensionless);

(3.5)

boundary,
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/ 510 Layer 2
8 ¢ ; 9, : :
5(N_-1)+1, L 5(N, —1j+2
5(N_—1)+34 5(N_-1)+4

J

Figure 3.1 Node numbering convention used in IWFM for an aquifer
system with N layers and N=5 nodes in each layer

H() = Heaviside (step) function to express the indicator functions 1, and
lg in terms of the layer number m, explicitly, (dimensionless);
The vertical head differences, Ah‘jJ and Ahj-’, at a finite element node are also

introduced in (3.5). These terms are computed by using the head values in the vertical
direction at a finite element node; i.e. hj.n, hj and hj.
IWFEM utilizes a mass lumping method to simplify equation (3.5). According to

this method, it is assumed that the head over an element can be approximated by a head

~

value at any one of the nodes; i. e. h=h,

j- The choice of the node for this purpose is
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based solely on the index j. It has been suggested, particularly in non-linear equations,
that mass lumping typically generates a smoother numerical solution than that arising
from the strict Galerkin, or consistent, formulation (Allen, et al., 1988). Applying the
mass lumping technique to the storage and leakage terms of (3.5) (i.e. first, fourth and
fifth integral terms), and performing the differentiations in the third integral term results

in

0= ] 5"

0
nm Ow; 00;  Jw; 0O
dr + Th. i dQ
Iqurml J=N-(Zm:—1 +1'[§'. J( Ox oOx oy oy J

+H(m-2) [[L;_yahwdQ
Q
+[1-H(m=N) ][] L nAh{od0
Q
_I_[qomidQ+ _”qsdmidg
Q Q

—”8 (X=X, Y- yS)QS'"t ;dQ

S

—”6 (X=X, Y= Vi )Q""“t ,dQ
k

—HS X=Xy, Y — ytd)'(itd »,dQ

td
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N-m
where qr = z T?(hjmj)-ﬁ is the inflow that is perpendicular to the boundary of
j=N-(m-1)+1

aquifer layer m. Equation (3.6) is valid for all layers of a multi-layer aquifer system.
Therefore, it represents a set of NxN, ordinary differential equations for an aquifer
system that is comprised of N_ layers with the unknown groundwater head values at
Nx N, nodal points.

To solve equation (3.6), the time coordinate is also discretized using the fully

implicit discretization method. Utilization of this method results in the following

equation:
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t+1 t+1 ] t ) _ t
ozﬂssi (hi TOP,i:—SSi(TOP, h')midQ

N ow,; 00; 803 0w;
_ t+1 d1—~+ Tt+1 t+1 i dQ
'gqr . j= N(%lﬂjj ] (ax OX é'y aYJ

+H(m-2) [ Ly (a0¢) ™ wde

Q

+[1=H(m=N) ][] i, (AN )”l »,dQ

Q

—H q:’lwidQ + H qtsgl(oidQ
ot !

t+1

—[18(x =%,y —yg ) =" a,dQ
'g S S A I

S

t+1

_Hg (X=X, Y = Ve )Qlklnt ,d0
Ak

t+1 .
_gs(x—xtd’y—ym)%widﬂ IZN'Enm:_ll,).il;\.];’N.m
where
TOP; = top elevation of the aquifer at node i, (L);
At = length of time step, (T);
t = index for time step, (dimensionless).

3.7)

The time discretization of the first integral term in (3.7) reflects the effort to

simulate changing aquifer conditions. As an example, consider the case where the
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aquifer converts from confined to unconfined during a simulation period At. At time step
t, Sgi is equal to the storage coefficient, So; of the confined aquifer. At time step t+1,
S;i“ is equal to the specific yield, Sy, of the unconfined aquifer. In this case, the rate of

release of water from storage during the time step has two components (McDonald and

Harbaugh, 1988):

Sy, (TOP, —h)
n (3.8)
and
S, (hi™*-TOR) 9)

At
Equation (3.8) is the rate of release of water from the confined storage and equation (3.9)
is the rate of release of water from the unconfined storage.
To compute the integrals in (3.7), it is necessary to define the global shape

functions, w;, explicitly. In finite element method, the shape functions are defined
separately for each element so that an element shape function, ;, is non-zero only over

the particular element it is defined for, and is zero for the rest of the spatial domain.
When the element shape functions are combined, they will produce the global shape
functions within the model domain. Since element shape functions are non-zero only
over the particular element, the integrals in (3.7) defined over the entire domain, Q, will
reduce to integrals over the part of the domain occupied by individual elements, Q°.

With this approach, the task is reduced to the computation of the contribution of each
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element to the global set of equations given in (3.7). Based on the above discussion, (3.7)

can be expressed as

Ngm st (nf™t-ToR)+S, (TOR, -hf)

0= > & ®°dQ°
e=Ng-(m-1)+1 g{[ At '

¢ d0° oM BN

et S ] (1) “ntet 0 L2 T e
re j=N(m-1)+1 e i | ox ox oy oy

+H(m-2) [[ Ly (Ahi“)mmfdge
Qe

+[1-H(mM-NL) ][] Lisn (Ah?‘)t+1 0fd0

—g{[ q:lo)?dQe + g{{ qi:lco?dﬂe

Q° S
t+1
‘HS(X—XW,Y—YW)%O&Q‘E
Qe lk !
b i=N-(m-1)+1,---,N-m
~[[3(x=xg, Y~ Y1) 24— 0’dQ - " (3.10)
A Ayg i m=21---,N_
0

where
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o; = element shape function defined at node i of element e,

(dimensionless);

o° = portion of the model domain occupied by element e, (L?);
re = face of element e that lies on the model boundary, (L);

e = index for element number, (dimensionless);

Ne = number of elements in an aquifer layer, (dimensionless).

A particular equation from the equation set (3.10) represents the approximate
form of the groundwater conservation equation at a node i. The element shape functions
will be non-zero only for those elements that connect at node i. Therefore, only the
integrals of (3.10) that are defined over these elements will have non-zero values.

In IWEM, the finite element method is implemented with linear triangular and/or
bilinear quadrilateral elements. In this approach, three nodes define a triangular element,
whereas a quadrilateral element consists of four nodes. For both types of elements, the
nodes are the points within the problem domain where heads are calculated. In the
following section, the expressions of the element shape functions for linear triangular and

bilinear quadrilateral elements are derived.

3.1.1. Shape Functions

3.1.1.a. Linear Triangular Elements
For a linear triangular element with nodes i, j, k in the counterclockwise direction
(Figure 3.2), the head over the element e can be approximated by a linear interpolation

function (Huyakorn and Pinder, 1983):

3-11



i! (Xi! yl)

Ky (Xk, Vi)

I, (X, ¥3)

Figure 3.2 A representative triangular element

he(X,y) =a; +a,X +asy (3.11)

Substituting the coordinates and the head values at each node into (3.11) will
generate 3 equations with 3 unknowns, namely a;, a, and as. Solving the system of
equations and rearranging terms results in an estimate of the head that is valid over the

linear triangular element e:

® (x,) = 0 (%, Y)h + 0 (x, Y + 05 (X, )N (312)
where

0 (X,Y) = " [0y =xiey )+ (v = i ) + by = x ] (3.13)

of ()= [y =Xiyi0)+ (Vi = yi X+ (= x Jy] (3.14)

i (X,Y) =$[(Xiyj —xyi )+ i =y o (x; -xi ] (3.15)
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A® =%[(Xi)’j —XjYi)+(XkYi _Xiyk)+(xjyk —Xij)]

=%[(Xi_Xk)(yj_yk)+(xj_xkxyk_yi)] (3.16)

In (3.12), of,®, ok are the element shape functions and A is the area of the

triangular element.

3.1.1.b. Bilinear Quadrilateral Elements

To define the shape functions for bilinear quadrilateral elements, the element
coordinates are transformed from (x, y) space into (&, n) space (see Figure 3.3) so as to
use efficient numerical techniques in carrying out the integrals given in equation (3.10).
Using the Lagrange polynomials, x and y can be expressed in terms of & and n in the

following form (Huyakorn and Pinder, 1983):

4
x =Y on(En) X, (3.17)
m=1
4
y=> oh(En) Yn (3.18)
=1

where o, (€,m) are the element shape functions in (&, n) space.

The shape functions o, (€,m) can be expressed in terms of first-degree Lagrange

polynomials as

oh (&m) = f[ [iJ f[ (ﬂj m=1..-4 (3.19)

i=1 &m—ii k=1 nm—nk
gj=gM nk=n"
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Figure 3.3 Transformation of a quadrilateral element from (X, y) space
to (€, n) space

3-14



where £™ and n™ are the coordinate values of node m in (& m) space, whereas

&=mn,=-1and & =n,=1. The formulation in (3.19) results in the following shape

functions:
o5 (&) =4 (€-D(-D (3.20)
@36 =4 @O @21)
a5(Em =7 E+D(n+) .22)
@i (Em) =5 A8+ (2.23)

Furthermore, an integral defined over the element area in (X, y) space can be

expressed in (&, ) space as

Yb Xp 11
j jf(x,y) dx dy = j jf(g,n) 9] d& dn (3.24)
Ya Xa -1-1

where |J| is the determinant of the Jacobian of the transformation from (x, y) space into

(€, ) space:
(9.3 %Y
& oE
9= =Z—X %—?2—)( (3.25)
ox oy € on 0€adn
on on

The partial derivatives that appear in (3.25) can be calculated by substituting
(3.20)-(3.23) into (3.17) and (3.18), and by performing the appropriate partial

differentiation. After algebraic manipulations, (3.25) can be written as
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|J|:%(a+b<2+cn) (3.26)

where
a=(x = X3)(¥2—¥a) = (X2 = X4 ) (V1= V3) (3.27)
b= _(Xl_xz)(ys_Y4)+(X3_X4)(Y1_YZ)] (3.28)
C= —(Xl—X4)(y2—y3)+(X2—X3)(y1—y4)} (3.29)

3.1.2. Computation of Integrals

Of all the terms included in the integrands that appear in (3.10), only o, (Te)t+1
and the dirac delta functions (namely, &(X—X,,y—Vs), &(X—X,,y—Yy) and

8(x — XY =Y )) are spatial functions. The rest of the terms of the integrands are either

constant over an element or only functions of time (refer to the following sections which
demonstrate that land subsidence, stream-groundwater interaction, lake-groundwater

interaction and tile drain/subsurface irrigation flows over an element as functions of time

Ng-m
only). It should be noted that the boundary flow, >’ J'J‘q”elm?dl“e , is a part of the
r

e=Ng(m-1)+1 e
boundary conditions and its value should already be available. A common practice in

t+1
finite element method is to assume that the transmissivity, (Te) , IS constant over an

t+1
individual element but differs from one element to another. In IWFM, (T‘*)+ is
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t+1
computed as the average transmissivity over an element. Approximating (Te) ’ using

the element shape functions and averaging it over an element e, one obtains

(Te )t+1 _ % ” (Zel-rjprlm? ]dQe (3.30)

where
Ne = number of nodes that constitute element €; 3 for a triangular
element and 4 for a quadrilateral element, (dimensionless);

A* = area of element g, (L?);

Tjt+1 = transmissivity at the j™ node that constitute element e, (L¥T).

t+1
Once the elemental transmissivity, (Te)+, is defined, IWFM utilizes a

simplification procedure on the conductance term (third integral of equation (3.10)) in
order to decrease the required computer storage. At node i, the conductance term is

expressed as

H(T )t+1ht+1 80)| acoj awf 8@1 40

f=N{m-1)41 e oX OX oy oy

t+l o ec, ept+l ept+l e
( ) M x (v@, Voshi™ )+ VafVofn|™ go®  (33D)
0¢| j=N:(m-1)+1
i
In equation (3.31), the i term of the summation is simply separated from the
summation notation. It can be shown that the shape functions for both linear triangular

and bilinear quadrilateral elements sum up to unity:
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N-m
> =1 (3.32)

j=N-(m-1)+1
From (3.32)
N-m B B N-m B
Vof=Vof+ Y Vof=0 (3.33)
j=N-(m-1)+1 j=N(m-1)+1
JEd
or
e N-m e
Vo =— > Voj (3.34)
j=N{(m-1)+1
JEd

Substituting (3.34) into (3.31) results in

€

’\iq “‘(Te )t+1h5+1 oo 00] " oo doy 4ot
J=N{(m-1)+1 ooe ox ox. oy %

= (Te )t+1 H _ NZ”:“ (?m??m}ehﬁﬂ) - Nzr:n (?m??m?hitﬂ) Q°
Of J:N-(_m_—l)+1 J:N-(_m_—l)+1
J# J#i
e\t & o e t el
:_(T ) Il > vofve (hi+ —ht* ) 08 (3.35)

o] iEN{(m-1)+1
J#i

After substituting (3.30) and (3.35) into (3.10), the only spatial functions defined
over an element are the element shape functions. The rest of the terms included in the
integrands can be moved out of the integrals. After this procedure only the following

integrals remain to be computed for each element in (3.10):
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j j (0% (3.36)

JIS(x—xo,y—yo)mfdQe (3.37)

° 0 0
j j O , 007 99 | 15e (3.38)
ax x oy oy
In (3.37) X, and y, represent either the coordinates of a stream location, (Xs, VYs),

the coordinates of a lake location, (X, Yi), or the coordinates of a tile drain/subsurface

irrigation system, (X, Yi), depending on the integral being computed in (3.10).

3.1.2.a. Integration over Triangular Elements
After substituting any of the equations (3.13)-(3.15) into (3.36), it can be shown

that (Huyakorn and Pinder, 1983)
Ae
j j @°dQf = — (3.39)
A 3

where A°® is the area of the triangular element and it is given in equation (3.16).
In IWFM, it is assumed that the integral in (3.37) yields the area of stream, lake or
tile drain/subsurface irrigation system that lies over the part element e that is associated

with node i:

JIS(x—xo,y—yo)mfdQe = A, (3.40)

Qe
where Aj; is the elemental area of the stream, lake or tile drain/subsurface irrigation

system depending on the integral being computed in (3.10).
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By differentiating the equations (3.13)-(3.15) with respect to x and y, and

substituting them into (3.38) one obtains (Huyakorn and Pinder, 1983)

o 803 ag)e 8(,0 e
|25 2 o

1

AAC [(yj —yk)(yk _yi)+(xj_xk)(xk _Xi)}

3.1.2.b. Integration over Quadrilateral Elements

(3.41)

IWFM utilizes the coordinate transformation from (x, y) space into (&, n) space

and uses 2-point Gaussian quadrature technique in order to calculate the integrals in

(3.36) and (3.38) numerically for quadrilateral elements (Gerald and Wheatley, 1994).

Using the equality given in (3.24)

11
[J o (x.y)dor = [ [ of (&, m)dedn
0° -1-1

where o; (&,m) is given in (3.19).

(3.42)

Application of the 2-point Gaussian quadrature on the integral in (3.42) results in
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[ [ of (gm)P|de dn

11
= [ [G(&m) dg dn

-1-1

{elaapelirshel-sabel-53] oo
where G(&,n):mie(&\,/;)p and |J| i\s/—giveﬁ/;n (3.26). s Vo

Similar to the assumption made for triangular elements, it is assumed that the
integral given in (3.37) is equal to the area of stream, lake or tile drain/subsurface

irrigation system over the part of quadrilateral element e that is associated with node i:

HS(X —Xo, Y~ Y, )0dQ° = Af, (3.44)

Qe

To compute the integral in (3.38) for a quadrilateral element, it is necessary to
define the partial derivatives in terms of & and n. Using the chain rule, one obtains

6E  ox Ot oy ok

0w; _ o 8_X+8(oie oy

0w; _ o 8_X_|_80)§e oy

on oOX on oy On

which can be expressed in matrix form as

ow; ow;
0o OX
_] (3.45)
doy | | 00i
o oy
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[ox oy |
& &
where J= is the Jacobian of the transformation whose determinant is given in
oX oy
o o]
(3.25). Equation (3.45) can be solved for agj(‘e and Oy using matrix algebra:
ow; oo
OX o0&
=J*t (3.46)
oy ow;
oy on

In (3.46), |J| stands for the determinant of the Jacobian, which is given in (3.25).

Based on these results, the integral in (3.38) can be transformed into the (&, n) space as
e 0 ° 0 ¢
jj dof 00 % laos
OX OX 8y oy

11

=[[G(gmn)dgdn

-1-1

{ldely 3ol a8 54] oo

w

where
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G(g,n)=i{[ﬂéw? _@6@?}(@&0? _Qﬁm?}

bl |{on o6& o€ on ) on o 0E on
e e e e
L _ox ool ox oot || ox doj  ox 0oj (3.48)
on 6¢ dg on )| o d& 3§ O
The integral _U o;dQ° in (3.36) can be interpreted as the part of the area of
Qe

element e that is associated with node i. Summation of all such areas of elements that
connect at node i defines the total area that is associated with node i (Figure 3.4).

Therefore, one can express the area associated with a node i as

Neg-m
A= > A (3.49)
e=Ng-(m-1)+1
where
Al = H ®?dQ°® = part of the area of element e that is associated with node i, (L?);
Qe
A = total area associated with a node i, (L?).

To be able to solve equation (3.10) numerically, it is also necessary to discretize
the wvertical flows, subsidence, stream-groundwater interaction, lake-groundwater
interaction and tile drains/subsurface irrigation terms as well as boundary and initial
conditions. In the following sections, the temporal and spatial discretization of these

terms will be discussed.
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Figure 3.4 Total area that is associated with node i

3.1.3. Vertical Flowswhen Aquifersare Separated by an Aquitard

The head difference between the aquifer layer in consideration (i.e. layer m) and

the upper adjacent layer (i.e. layer m-1) is expressed in the finite element notation as

(Ah%l )t+1 _

where

ht*t-h™ if hl >z,

i i—-N i
t+1 ; t
bi _hi—N if hi <Zbi
t+1 ; t
hi -zy f hi > Zp,
0 if h: <zy,

head at node i, (L);

ht > Zt.
i-N

(3.50)

head at upper adjacent node, (L);

bottom elevation of the aquitard at node i, (L);

top elevation of the aquitard at node i, (L);

index for previous time step, (dimensionless);
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t+1 = index for present time step, (dimensionless).
1
It should be noted that the decision on how to compute (Ahi”)t+ in (3.50) is based

on the known head values at time step t. During the development of IWFM, it has been
observed that using the unknown head values at time step t+1 to perform the above
computations creates convergence problems. On the other hand, the formulation given in
equation (3.50) results in robust solutions.

Similarly, the head difference between the aquifer in consideration (i.e. layer m)

and the lower adjacent layer (i.e. layer m+1) can be expressed in the finite element

notation as

h*oh if Wiz, o Wt >z,
i i+N i | i+N I

t+1  if Rt t
- =7, >Zn

(ang) =1 e T Ty (351)
| h*_z  if hisz. - ht <z |

. T Ly . Z Lt . b;
i | i | i+N I

oot .ot
0 if hi =2y ; hi+N <Zp;

Substituting (3.50) and (3.51) into equation (3.10), one can express the vertical flow

terms as
Ne-m t+l
> H(m-2) Il Li_N(Ahi”) " oedo®
e=Ng-(m-1)+1 0O¢

—H(m-2)Lj_y/ah} )HlAi (3.52)
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Ng-m

> [-Hm-NO)] [ Lisn (Ahid )t+1 ofdQ®
e=Ng-(m-1)+1 0Of

=[1-H(m-N)] Li+N(Ah?)t+lAi (353)

3.1.4. Vertical Flowswhen Aquifersarenot Separated by an Aquitard

As in the previous section, the head difference between the aquifer layer in

consideration and the upper adjacent layer can be expressed in finite element notation as

hiHt—h{*§ if hizz ; hiy >z
AL |2 —hiER i hf<zi 5 hisy >z
+ ; .
hi —Zki if hi ZZki ; hi—N ZZki
0 if hit <Zy; hit_N = Z;
where
Z, = elevation of the interface between the aquifer in consideration and

the upper adjacent aquifer layer at node i, (L).
Similarly, one can express the discretized head difference between the aquifer and

the lower adjacent aquifer layer as

h* ot if ht>z,. o ht >z
I i+N i I i+N i
(Ahid)t+l= P 1 My =2 (3.55)
hE*l—zki if 2z 1 b <z
0 if hi=zg ; h <z
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3.1.5. Land Subsidence

The expression for the rate of flow out of storage due to land subsidence, Qsg, IS
already given in previous chapter. Utilizing this expression and the approximate head

field from equation (3.2), gsg at an aquifer layer m can approximately be expressed as

Nm o ohy
0= ., S;—>0; m=L--,N (3.56)
j=N-(m-1)+1 1ot

Equation (3.56) is the spatially discretized version of the rate of flow out of
storage due to land subsidence. To discretize (3.56) in time, IWFM uses the

methodology described by Leake and Prudic (1988):

t+l ot t _pt
O = J__Ngl)ﬂ (s, )t (mTthc")wsejb;j w o; (3.57)
where
Ssej bgj if h}*l > th
(s‘sj )t - (3.58)
Ssijbgj if h}” < héj
Ssej = elastic specific storage at node j, (1/L);
SSij = inelastic specific storage at node j, (1/L);
boj = the thickness of the interbed at node j, (L);
h = pre-consolidation head at node j, (L).
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Multiplying (3.57) by element shape functions, w?, integrating over individual

elements and utilizing the mass lumping technique previously, one obtains

Ng-m ‘ h_t+1_ht ht. —h-t
B R e

Once the groundwater flow equation is solved for a time step, the total
compaction at a node can be computed by inserting the change in head, AhE+1 =h* —h!,

into expressions for the elastic and inelastic change in the interbed thickness given in

previous chapter, and summing the elastic and inelastic compactions:

bt+1 bt+1+Abt+l (360)
Abg =—Ahi"'s,, by, (3.61)
Abgt = —Ah;*S b, (3.62)

Finally, the thickness of the interbed at a node can be computed by

bf;l = bf)i —Abf;l (3.63)

In (3.63), the change in the interbed thickness, Ab”l, is subtracted from the
previous thickness of the interbed, bgi , Since a positive value represents compaction.

If an inelastic compaction occurs, it is also necessary to modify the pre-
compaction head. In this case, the pre-compaction head is assigned the new head at the

groundwater node:
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hg, if hi">hg

he'* = (3.64)

hit if hi™<h!

3.1.6. Stream-Groundwater | nteraction

The expression for stream-groundwater interaction, Qsin:, that occurs at a section
of the stream represented by a stream node is given in previous chapter. In IWFM, it is
required that a stream node coincides with a groundwater node. Utilizing the expression

for Qsintas given in previous chapter, one can write

t+1

8(><—><s,y—ys)%

S

Nem Csj[max(htsfl,hbj)—max(hgﬂ’hbj )}
J
= > ¥(X—X,Y-Y) o; (3.65)
j=No(m-1)+1 /\ﬁ
where

CSJ. = stream bed conductance at groundwater node j, (L%/T);
hsj = stream surface elevation at groundwater node j, (L);
hbj = elevation of the stream bottom at groundwater node j, (L);
A = effective area of the stream segment at groundwater node j, (L?).

Equation (3.65) is valid only at the groundwater nodes where a stream node

exists. Mathematically, this is represented by multiplying by the dirac delta function,

8(x—xs,y—ys), as shown in equation (3.65). Furthermore, (3.65) is defined for all
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aquifer layers only for the completeness of the mathematical derivation. In reality,
stream nodes coincide with only the groundwater nodes at the top most layer (i.e. m=1)

and (3.65) vanishes for other aquifer layers (i.e. m=2,---,N ).

After multiplying (3.65) by the element shape functions, ®; and integrating over

individual elements, one obtains

Ng-m t+1

> J' E‘)(x—xs,y—ys)—;\int w;dQ°
Qe

e=Ng-(m-1)+1 s

=C, [max(h:l,hbi)—max(h.”l,hbi )} (3.66)

Due to the expressions given in (3.40) and (3.44), the following equivalence is

used in (3.66):

A= 2 [[3(x=x,y-y,)efdo? (3.67)
Q

3.1.7. Lake-Groundwater |Interaction

The expression for lake-groundwater interaction, Qint, that occurs through an
effective area of the lake represented by a lake node is given in previous chapter. In
IWFM, it is required that a lake node coincides with a groundwater node. Utilizing the

expression for Qkint @S given in previous chapter, one can write
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t+1

S(X =Xy ,y— Ikint
( kY= Yi) Ay
= D (X=X YY) A o;  (3.68)
j=N{(m-1)+1 Ik
where

C,kj = lake bed conductance at groundwater node j, (L%/T);
he = lake surface elevation, (L);
hb,kj = elevation of the lake bottom at groundwater node j, (L);
A,kj = effective area of the lake at groundwater node j, (L?).

After multiplying (3.68) by the element shape functions, ®; and integrating over

individual elements, one obtains

Ne.m t+1

z _[ a(x_xlk’y_ylk)%m?dge
0

. . €
B Alki Z

j 8(X =Xy, Y — Yy ) 07 dQ°
Q

—Cy [max(ht+1 ot )~ Max (2, iy )} (3.69)

Ik’

Due to the expressions given in (3.40) and (3.44), the following equivalence is

used in (3.69):
Neg-m

A= D Ié(x—xlk,y—y,k)mfdQe (3.70)
Qe

e=Ng-(m-1)+1
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In equations (3.68)-(3.69), the lake surface elevation, h,‘ljl, appears without the

subscript for the corresponding groundwater node. This is due to the fact that the
changes in the lake surface elevation over an individual lake are assumed to be negligible
in IWEM. For this reason, the same lake surface elevation prevails for all lake nodes that

represent an individual lake.

3.1.8. TileDrainsand Subsurfacelrrigation

Similar to stream-groundwater interaction and lake-groundwater interaction, the

term for the tile drains/subsurface irrigation can also be discretized as follows:

t+1
td

S(X_Xtd'y_ytd)

Atd
= > 3(X=Xy. YY) ©; (3.71)
j=N-(m-1)+1 Atdj
where
Ctdj = conductance of the interface material between the tile

drain/subsurface irrigation system at groundwater node j, (L%/T);

Zy; = elevation of the tile drain or the head at the subsurface irrigation
system, (L);
Aw; = effective area through which tile drain outflow or subsurface

irrigation inflow at groundwater node j is occurring, (L?).
After multiplying (3.71) by the element shape functions, ®; and integrating over

individual elements, one obtains
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Ne-m t+1

Y g{ 8(X XY ~Yia) - 0fd0*

e td

e Z J]8(x=xig.y~yig) 0fdQ’ (3.72)
. Q

and

Ag = X J[8(x=xgy=Yq)ofdQ’ (3.73)
Q

3.1.9. Initial Conditions

The solution of equation (3.10) requires the knowledge of groundwater head

values at the previous time step, t. Therefore, for the first time step, the head values at

t =0 need to be defined by the user (i.e. initial head values h}zo).

3.1.10. Boundary Conditions

Boundary conditions are also required to solve (3.10). Boundary conditions, as
well as initial conditions, constrain the problem and make solutions unique. Boundary
conditions are not only necessary in solving the groundwater equation, but the accuracy is
important as well. If inconsistent or incomplete boundary conditions are specified, the

problem is ill defined (Wang and Anderson, 1982).
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IWFM has the functionality to incorporate the following boundary conditions into
the groundwater equation: (i) specified flux (Neumann), (ii) specified head (Dirichlet),
and (iii) general head. These boundary conditions can be constant over time or time-
variant. In the following sections, the implementation of these boundary conditions into

the numerical solution procedure will be discussed.

3.1.10.a. Specified Flux (Neumann)
In a finite element representation the specified flux value is multiplied by element

shape functions and integrated over the element face for which the flux is specified:

[[atsordre ==[[f[x,y, (t+1)- At] ofdr® (3.74)

Fe

In IWFM, —”f[x,y,(t+1)-At]coied1"e is the boundary flow specified by the user and

Fe
evaluated at time (t+1)-At. Equation (3.74) replaces the second integral term of

equation (3.10).

3.1.10.b. Specified Head (Dirichlet)
In the case that the head is specified at a finite element node r, the r™ equation in

the system of equations given in (3.10) becomes redundant. There is no longer a
necessity to solve this equation since the head hﬁ” at node r is known. Therefore, this

equation is dropped from the system of equations.
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3.1.10.c. General Head

The general head boundary inflow at a finite element node r can be expressed as

Qfhe, =20k ~ni”) (375)
where

Qghe, = general head boundary flow at node r, (L/T);

Ky = hydraulic conductivity of the aquifer at node r, (L/T);

A = cross-sectional area at node r that flow passes through, (L?);

d = distance between the boundary node r and the location of the

known head, (L);

h, = head value at the boundary node r, (L);

heus = head at the nearby surface water body or aquifer, (L);

t = index for time step, (dimensionless).

When general head type boundary condition is defined at node r, equation (3.75)

is subtracted from the r™ equation of the equation system (3.10).

3.2. Stream Flows

Equations given in previous chapter regarding the stream flows are already in
algebraic form. Therefore, they are ready to be coupled with the discretized groundwater
equation described in the preceding sections. The main stream flow equation can be re-

written for the present time step as

Q, (nf?)-Qlt+Qu, +Cy | max(nt%hy, )-max(nithy, ) [<0  (3.76)

inj
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t+1
sintj !

The explicit expression for the stream-groundwater interaction, Q has been

substituted into (3.76). The expressions for thl and thtjliv, are given in previous
1 |

chapter. Equation (3.76) is coupled and solved simultaneously with equation (3.10) for

stream surface elevation, h§i+1, and groundwater head at the stream node, h{*™,

3.3. Lakes

The conservation equation for lake storage given in previous chapter is discretized

as
Sik hﬁfl)—slk (hltk)
t+1 t+l | At+l
( N —Qurik — Qinik + Qiko
Nik
t+1 t+1
- {Plki Al —EV Al
i=1
_Clki [max(htl'k*l, hblki )— max(hit+1, hblki ):|} =0 (3-77)
In (3.77), the explicit expression for the lake-groundwater interaction, Q};ilmi , has
been used.

The total evaporation from the lake area represented by a lake node, E\/I}jilAlki , IS

limited by the amount of water available at that lake node. This is represented in IWFM

by the following formulation:
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A, A
EVILtlAIki < A_": max(h,tljl — by 10) + PIElAIki +%( brik + Q:r;}() (3.78)
Ik

Equation (3.78) suggests that the effect of precipitation and inflows to the water
storage at a lake node is considered before the computation of evaporation. Also, the last
term of equation (3.78) suggests that the inflows into the lake from diversions, bypasses
and upstream lakes are distributed among the lake nodes evenly.

Equation (3.77) is valid when the lake surface elevation is less than the pre-

specified maximum lake surface elevation, h -, or when the outflow from lake, Qi

is zero. If the lake surface elevation exceeds the maximum lake surface elevation, simply
assigning h};l to h|kmax does not satisfy equation (3.77) and violates the requirement for

the conservation of mass. In order to compute the lake outflow and still conserve mass
by keeping lake elevation at its maximum, IWFM utilizes an alternative method.

Assuming that the groundwater head value is known, a function, Fy, can be

defined as equal to (3.77) less Q-

_Slk(hltlfl)—sm(h}k)

t+1 1 A+l
ﬁk(huf )— A —Qbrik — Qinik
Nk
- {Pltk*ilA,kI EVi A, (3.79)
i1
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Equating (3.79) to zero and solving is equivalent to finding its root with respect to h}ljl.
Figures 3.5.a and 3.5.b show two possible cases when (3.79) is plotted as a function of
his'. The dashed parts of the curves represent Fy when ik 19 @SSUMed to be large
enough so that it does not have an effect on F. However, in reality, Fy is not defined
beyond h|kmax' When the root of (3.79) is below h|kmax (Figure 3.5.a), lake outflow,

I3 is zero and the computed root also satisfies (3.77). On the other hand, when the

root of Fy is above hy _ ~ (Figure 3.5.b), then Qjre is non-zero. IWFM uses an iterative

solution technique (namely, Newton-Raphson method which is explained later in this
chapter) to find the root of (3.79). This method requires that the gradient of the function
whose root is being sought for is non-zero and finite. In the case depicted in Figure 3.5.b,

however, the gradient of Fy at hy _ is infinite. In this case, IWFM modifies the
function Fy in the vicinity of h, _so that the gradient of the modified function will be

non-zero and finite and its root is guaranteed to be equal to h|kmax (see Figure 3.5.c):

R if hltlzrlghlkmax
R = (3.80)

—&

where

(3.81)

t+1
L
]
&

Gy = Fi (hlkmax )X[1+

Fi = modified version of Fy.
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t+1
hIk

(a) Lake elevation does not exceed the maximum lake surface elevation

I:Ik

e t+1 t+1
. lko hlk

(c) Modified function, Gk, when lake elevation exceeds the
maximum elevation

Figure 3.5 Plots of possible lake storage functions and the
modified function when lake elevation exceeds the
maximum elevation

3-39



€ 1s chosen so that its value is small enough compared to the convergence criteria

used for the iterative solution method. In this case, lake outflow, Q|F, can be expressed

as (Figure 3.5.c)
};3 =—Fi (hlkmax ) (3.82)

This approach allows for imposing the maximum lake elevation without
disturbing the conservation of mass and the efficient use of numerical techniques for the

solution of non-linear equations. Equation (3.77) is coupled and solved simultaneously

with (3.10) for lake elevation, h{/*, and groundwater head at lake node, h{**.

3.4. Land Surface and Root Zone Flow Processes

Mathematical models used in IWFM for the simulation of land use and root zone
flow processes are described in detail in another document (DWR, 2012) and they will

not be covered in this documentation.

3.5. Soil Moisturein the Unsaturated Zone

The conservation equation that models the vertical movement of soil moisture in

the unsaturated zone is discretized in IWFM as follows:

t 0L — 0% t1 tel
1 H +
Dn —At =Xinn — Ku,n (3.83)

where

D, = thickness of layer n, (L);

3-40



Oun = soil moisture in the ™ unsaturated layer, (L/L);

At = length of time step, (T);

Qinn = inflow into unsaturated layer m from layer n-1, (L/T);
Kin = unsaturated hydraulic conductivity of layer n, (L/T);
t = time step, (dimensionless);

n = unsaturated layer number, (dimensionless).

The unsaturated hydraulic conductivity in equation (3.83), Kfj’rl, can be

represented either by Mualem-van Genuchten approach or Campbell’s method:

m)2
Ken|—" 1-[1-| &0 ; van Genuchten-Mualem
NTn NTn
t+1
Kuin = (3.84)
3 2
9t+1 +K
u,n .
Ks.n ; Campbell
NT.n
and
m= My
Aoy +1 (3.85)
where
Nrn = total porosity of the unstaturated layer n, (L/L);
An = pore size distribution index of unsaturated layer n, (dimensionless).
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Due to the non-linearity of equation (3.83), it is solved for eff% iteratively.

IWFM uses a combination of bisection and Newton’s methods to solve for the soil
moisture in the unsaturated layer n (Gerald and Wheatley, 1994). The iterative solution

methodology starts and continues with Newton iterations:

F (o)

K+1 k
1 1
(o) =(o) —— (285)
1 +
F{(Bu'n) }
where
k
t+1 t
TN
n,n n At
2
m
t+1 % t+1 %n
eu n eu n
Ksn| — 1-|1-| — ; VGM
NTn NTon
k
t+1
F{(egn) }
(3.87)
t+1 t
G
n,n n At
2
t+1 3+;T
Ou'n n
—Ksn| — ; Campbell
MNT,n
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(3.88)
2-)
3+
3+i (et+1)k An
7“n u,n
—Ksn ; Campbell
NT,n NTn
Gy =1-GY (3.89)
(e”l)k H
u,n
G,=1- (3.90)
NT,n
1-m
(e”l)k m
1 u,n
dG, =— (3.91)
MTn| NT)n

In equations (3.86) - (3.91), k is the iteration number and vGM represents the van
Genuchten-Mualem approach.

Newton’s method is used until the estimate for the soil moisture goes above total
porosity less 10% of the user-defined convergence tolerance for the iterative solver. At

this point, bisection method is used as the iterative method. The reason for this switch
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between the two methods is that the gradient of the van Genuchten-Mualem equation
near saturation becomes very large and this causes problems for Newton’s method.
Bisection method has slower convergence but is more robust; therefore it is preferred
when soil moisture is close to saturation.

Equation (3.86) is solved iteratively until a user-specified convergence level is

k+1 k
achieved; i.e. until ‘(65*,}1) —(et;;) is less than a pre-defined value.

The flowchart for the routing of moisture in a multi-layer unsaturated zone is illustrated
in Figure 3.6. As shown in this figure, the water that percolates through the root zone is
the inflow to the first unsaturated layer. First, the moisture content at the first unsaturated

layer (e{,*ll) iIs computed, iteratively. The outflow, Qgﬁ%,l, can then be redefined as a

- t+1\K*L - t+1 t+1
function of (eull) . Based on the conservation of mass, Qqt2 =Qqyt1. Therefore,

the soil moisture in layer 2 and the flow out of layer 2 are simulated in the same manner
as layer 1. This procedure is performed for each layer until the net deep percolation into
groundwater is calculated.

When simulating the soil moisture at each layer, IWFM checks that the soil
moisture is less than or equal to the total porosity. If the soil moisture exceeds the total

porosity of unsaturated layer n, the excess soil moisture, e(t;;(,ln Is assumed to drain due to

gravitational force and is routed to unsaturated layer n+1, unless the layer is the last
unsaturated layer within the system. The last layer’s excess soil moisture is routed to the

saturated groundwater below it.
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Figure 3.6 Flowchart for the unsaturated zone flow simulation

\ 4

3-45



3.6. Small Watersheds

The conservation equation for the groundwater storage at a small watershed is

discretized in IWFM using the implicit discretization method:

St =Sy +( Dty — Qiig — Quugs ) At (3.92)
where

Swg = groundwater storage within the small watershed boundary, (L®);

Dwp = net deep percolation, i.e. recharge, to the groundwater storage

within the small watershed domain, (L*/T);
Qwg = subsurface outflow from the small watershed that contributes to the

groundwater storage at the modeled area, (L*/T);

Quwgs = contribution of groundwater storage to the surface flow at the small
watershed, (L*/T);

At = length of time step, (T);

t = index for time step, (dimensionless).

The net deep percolation, Df,jpl is computed numerically using the same

methodology described in the preceding section. Subsurface outflow from the small

t+1

watershed, Q,,4, and the contribution of groundwater storage to the surface flow at the

small watershed, Qf,jés, are computed as functions of the groundwater storage at the

previous time step and the net deep percolation:

wg

g = Cug (Sig + Diap ) At (3.93)
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b = Cus | (Shg + Dy ) At~ Sy | (3.94)

where
Cwg = subsurface flow recession coefficient, (1/T);
Cws = surface runoff recession coefficient, (1/T);
Swgt = threshold value for groundwater storage within the small watershed

above which groundwater at the small watershed contributes to

surface flow, (L®).

3.7. Solution of the System of Equations

Simulation of the hydrological processes that are included in IWFM requires the
simultaneous solution of three equations; namely groundwater flow equation, stream flow
equation and the lake storage equation. Spatial and temporal discretization of the

groundwater, stream and lake equations result in a system of non-linear algebraic

equations where the unknowns are the groundwater head (h”l), stream surface

elevation (hgﬂ) and the lake elevation (hhjl) at the present time step. This system of
equations can be represented in a matrix form as

[X]{E 4 (R} =0 (3.95)

In (3.95), {]I—]I”l} is the vector of unknowns that is generated by augmenting the

unknown groundwater heads, stream surface elevations and the lake surface elevations at

the present time step:
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ht+1

t+1
hsNR

t+1
hIkl
{H“l} D (3.96)

t+1
hlkN|_K
h}_+1

t+1
hN,_~N

where
NR = total number of stream nodes, (dimensionless);

NLK

total number of lakes, (dimensionless);

N = number of aquifer layers, (dimensionless);

N = number of finite element nodes in an aquifer layer,
(dimensionless).

Therefore, equation (3.95) represents a system of NR + NLK+ N -N equations.
The first NR equations are expressed as in (3.76), the (NR+1)th to (NR+NLK)th equations
are expressed as in (3.77), and the rest of the equations are given in (3.10).

IWFM uses Newton-Raphson method in order to linearize the equation set (3.95).
This method utilizes the Taylor series expansion of (3.95) around starting values of
unknowns and truncates the second and higher order terms. Using the Newton-Raphson

method, the r'" equation of (3.95), [, , can be expressed as (Huyakorn and Pinder, 1983)
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2

k
NR+NLK+N_ -N Kl
( oLy J (amf) ™ =R (3.97)

i=1 om}
where
F =K {Hl’HZ"“'HNR+NLK+NL-N—1’HNR+NLK+NL-N} (3.98)
and
k+1 k+1 k
(AH}”) :(Hi+1) —(Hi”l) (3.99)

In (3.97)-(3.99), k is the iteration level. For r=1---,NR+NLK+N| -N

equation (3.97) represents a system of linear equations that needs to be solved for

k+1
(A]H[i”l) . This system of equation can be expressed in matrix notation as

[XkH(AHt”)M} - {F"} (3.100)

The aim is to estimate the unknown values of Hi”l, compute the components of

the matrix [Xk} and the vector {Fk} and solve the equation system (3.100) for

k+1
(A]H[i”l) . The Ly-norm of the difference vector is used to check the convergence:

NR+NLK+N_ -N k112
_ \/ 3 {(AH}“) } (3.101)
2

i=1

“(AHt+l)k+l

If the L,-norm given in (3.101) is not smaller than a pre-specified tolerance, the

unknown values of Hi”l are re-estimated using (3.99), and the procedure is continued
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until convergence is achieved. The components of [Xk} and {]Fk} are listed in

Appendix A.

The coefficient matrix [Xk} in (3.100) is a sparse matrix. The level of its

sparseness depends on the numbering of groundwater, stream and lake nodes. ITWFM
uses either the over-relaxation method combined with the Jacobi method (Gerald and
Wheatley, 1994), or a modified pre-conditioned conjugate gradient method (Dixon et. al,
2010 and 2011) to solve the equation system in (3.100), iteratively. The over-relaxation
method will be explained in this document. The details of the modified pre-conditioned
conjugate gradient method are explained by Dixon et. al (2010, 2011).

The over-relaxation method starts with an initial estimate to the solution vector,

k+17"
{(AH“&) } , Where r is the iteration counter for the iterative solution of (3.100). It

should be noted that the iteration counter r is different than the iteration counter k. Index
k is the iteration counter for Newton-Raphson method which is used to solve a system of
non-linear equations. On the other hand, index r is the iteration counter for the matrix
inversion method that is used to solve the matrix equation that is generated by a single
iteration of the Newton-Raphson method.

With initial estimates, the i equation of (3.100) can be solved for the new

estimate of the unknown value:
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NR+NLK+N ‘N ka1l
K- Y xk {(AH}”) }
r+l =1

{(AH}”)M} _ " (3.102)

Xii

Equation (3.102) is used to compute all the components of the solution vector,
and the convergence between the initial estimates and the newly computed values is

checked:

i J L 1

ZH(AH}H)'(HTH “AH}ﬂ)kﬂ“rJ .. 5109

where i=1---,NR+NLK+ N -N. If the convergence criteria given in (3.103) is not

satisfied for all unknowns, the over-relaxation method is used to update their values:

{(AH}ﬂ)kﬂ}

(3.104)

Kl r+1
where i=1---,NR+NLK+N| -N. In (3.104), [(AH}“) } is the new estimate

K+l r+1
that will be used in the next iteration instead of {(AH}”) } , and B is the relaxation

parameter.
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3.7.1. Compressed Storage of Matrices

In order to decrease the computer storage requirements, IWFM only stores the

non-zero components of the coefficient matrix [Xk} (see Appendix A for expressions of

non-zero components). These values are stored in a one-dimensional array in order to
decrease the array access times and, hence, computer run times.
Storing only some of the components of a two-dimensional matrix in a one-

dimensional array requires the storage of locations of these components to be able to re-

construct the matrix. The location of a non-zero component in the matrix [Xk} depends

on the node numbering in the model and the stream, lake and groundwater nodes that
interact with each other. As an example, consider Figure 3.7 where a hypothetical model
domain with 2 aquifer layers is represented by 6 finite elements, 12 groundwater nodes, 5
stream nodes and 1 lake. Therefore, there are a total of 18 unknown parameters whose
values are computed by solving the stream, lake and groundwater conservation equations
simultaneously.

A stream node is connected to a groundwater node and other stream nodes that are
located directly upstream of it; a lake is connected to multiple groundwater nodes; a
groundwater node is connected to an upper groundwater node, a lower groundwater node,
surrounding groundwater nodes and a stream node or a lake. The node connection

scheme for the system shown in Figure 3.7 is tabulated in Table 3.1. The global
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Figure 3.7 Hypothetical model domain
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unknown numbers are printed in bold and the corresponding stream node, groundwater
node or lake numbers are printed in parentheses.

Table 3.1 lists the locations of the non-zero components of the coefficient matrix

[Xk}. An “unknown number-connecting node” pair represents the row and column

numbers of a non-zero component. An “unknown number-unknown number” pair
represents a component located on the diagonal of the matrix. For instance, an unknown
number of 10 and connecting node number 4 represents the component in the 10" row
and the 4™ column of the coefficient matrix (see Table 3.1). This component is the
derivative of the conservation equation written at groundwater node 4 with respect to the
stream surface elevation at stream node 4.

Table 3.1 lists the global unknown numbers and the connecting nodes as they are
stored in IWFM. For some groundwater nodes, a value of zero appears for upper or
lower connecting groundwater nodes. When IWFM encounters a value of zero, this
means that there is no upper or lower aquifer layer for the groundwater node being

considered.

IWFM uses a one-dimensional array, {JND}, to store the information given in

Table 3.1. Another one-dimensional array, {NJD} , 1S used to store the index numbers in

{JND}, where information for a node, i.e. for a row of [Xk] starts:

Unknown 1 Unknown 2 Unknown 6 Unknown 18
(rowlof [Xk}) (rowzof [Xk}) (rowe of [X"J) (row 18 of [Xk})
{IND} = 17, 2815 ., 6101211 ,,18120,1614,1517} (3.105)
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Connecting Nodes Connecting Nodes

Unknown Upstream  Upstream Unknown GW GW GW
Number ~ GW Node Node 1 Node 2 Number Node 1 Node 2 Node 3
1(s1) 7(91) 6 (Iky) 10 (94) 12 (9e) 11 (gs)
2(sy) 8 (0,) (b) Connecting nodes for lakes
3 (s3) 9(9s)
4 (s4) 10 (94)
5 (Ss) 8 (9,)

(a) Connecting nodes for stream nodes

Connecting Nodes

Unknown Upper Lower Stream/Lake  Stream/Lake Surrounding  Surrounding  Surrounding  Surrounding  Surrounding

Number  GW Node GW Node Node 1 Node 2 GW Nodel GWNode2 GWNode3 GWNode4 GW Nodeb5

7(gy) 0 13(g7) L(s)  iiiinnniil o 8(g) 5

8(92) 0 14 (9s) 20 5 (55) 7777777 10(94)

9 (9s) 0 15 (90) 3(sy) i 12(Ge)

10(g4) 0 16 (910) . 4(54) o 6 (lk,) 7(91)

11 (gs) 0 17 (911) L 6 (Iky) 10 (94)

12 (ge) 0 18(gp) iz 6(lky) 10 (94)

13 (97) 7(91) 0 MEERRRhE R R R hER R i 14(ge)

14 (9s) 8(92) 0 i 16 (910)

15 (9o) 9(9s) 0 18 (912) 16 (910)

16 (910) 10 (94) 0 13 (g7) 14 (gs)

17 (911) 11(9s) 0 3 : 16 (910) 18 (912)

18 (91») 12 (ge) 0 25:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:55 16 (910) 14 (gs) 17 (911)

(c) Connecting nodes for groundwater nodes

Table 3.1 Node connection scheme for the example shown in Figure 3.8

3-55



{NID}={ 1 , 3 -, 15 ;++,96} (3.106)
With the information stored in the arrays {JND} and {NJD}, the coefficient
matrix can be reconstructed. For the example shown in Figure 3.7, the coefficient matrix

[XKJ has a total of 324 (= 18 x 18) components. The above methodology for storing

information has a total of 222 components (102 components for {JND}, 18 components

for {NJD} and 102 components for the array that stores the actual values of non-zero

components of [XKJ). This amounts to around 30% of savings in computer storage

requirements even for a small problem as shown in Figure 3.7. For larger problems,
savings in storage requirements will be larger.
Another two-dimensional matrix that arises due to the numerical methods used in

IWFM is the conductance matrix (see equation (3.10)):

Ne-m 1
e S ) oo i)
e=Ng-(m-1)+1 0

where 1<m <N and.N-(m-1)+1<i,j<N-m.
The components of [AT”l} are stored for each groundwater node. As an

example, consider the finite element mesh depicted in Figure 3.7. For elements 1, 2, and
3 of Figure 3.7, the element conductance matrices for the first aquifer layer will have the

following structure:
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0, 0, 04
ATE  ATE  ATE | g

91.91 91.92 91,94 3108
[ATEl]Z Alpa ATge Alge | 9% (3109
Anglm ATgei,gz ATgezlpg4 94
9, g3 96 94
AT ATn AT AT | o
[ ATeZ]: ATge;gz ATgeégs ATge;ge ATge;gz; 93 (3.109)
Ang,gz ATgeé% ATgng% ATQE;M Y6
_ATgeigz ATgei% Ang,% ATgefyg4_ Y4
94 96 95
ATgeiw ATgej,ge AT§2,95 Ya
(AT ATR,, AT, ATR, | 6 o
AT:;M ATJ;% AT;;% 9s

In equations (3.108)-(3.110), the time step index t+1 is dropped for simplicity.
Element conductance matrices will have the similar structure for other layers of the
aquifer system except that the indexing will change with the changing node numbers.
The component values are also likely to be different for each layer since the
transmissivities at a vertical cross-section may differ. [IWFM stores the following

components of matrices (3.108)-(3.110) in an augmented one-dimensional array:
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AT} = {AT;l’QZ 'AT§11:94 ' node g;
! € e e, e,
AT92194 +AT92194 ’Angvg1 'AT92~93 ’Angyge’ node g
€2 €, e
AT93'96 ’ATg3v94 ’ATgsagz ' node g3 Layer 1
€ € e, €, e, es es
ATg4,gl’ATg4,g2 +ATg4,gz ’ATg4,g3 ,AngtrgG +AT94’96 ’ATg4,g5’ node g,
e e
AT AT node g
ATS2 4+ AT ATS2 AT AT node g
96.94 9694 9692’ U693 Ye:Us’ 6
e, e,
ATQW% ’AT971910’ node g;
’ Layer 2
€5 €g €g es €6
ATglzvglo * AT912vg10 ’ATglzygs ’AT912:99 'AT9121911} node gy, (3.111)

where {AT} is the one-dimensional storage array for the non-zero elements of the
conductance matrix [AT]. As can be seen from (3.112), {AT} stores the non-zero
components of the global conductance matrix [AT], excluding the diagonal components.

As discussed earlier, the diagonal components of [AT] are not stored due to the

simplification performed in the derivation of the system of equations (refer to equations

(3.31)-(3.35)). IWFM uses the information stored in {JND} and {NJD} to reconstruct

the two dimensional matrix [AT] from the one-dimensional array {AT}.

3.8. Usage of Parametric Grid

To compute the matrix and the vector components appearing in equation (3.100)
for groundwater nodes, it is necessary to define aquifer parameter values (namely
horizontal and vertical hydraulic conductivities, specific storage coefficient, specific

yield, interbed thickness, ela