Integrated Water Flow Model (IWFM): A Tool For Numerically Simulating Linked Groundwater,
Surface Water And Land-Surface Hydrologic Processes
Emin C. Dogrul, Charles F. Brush, and Tariq N. Kadir

What is IWFM?
- Comprehensive, water resources management and planning tool developed by the California Department of Water Resources (CADWR, 2005)
- Simulates groundwater flow, surface flows and interaction between surface and subsurface flow processes using fully coupled conservation equations
- Land-use based simulation of surface runoff processes; agricultural (with user specified crop types), urban, native vegetation and riparian vegetation lands can be simulated
- Simulates agricultural water demands based on crop acreages and agricultural management practices
- Computes stream diversions and groundwater pumping to meet the agricultural and urban water demands
- Database management using HEC-DSS files as well as ASCII text files
- Written in Fortran 90 using object-oriented programming concepts for ease of maintenance and extensibility
- Public domain source code and example problems available for download from California Department of Water Resources’ IWFM web site

Vadose Zone Module
- Physically based routing of precipitation and irrigation water through root zone and multiple layers of unsaturated zone
- Simulation of:
 - Infiltration due to precipitation and irrigation
 - Surface runoff generated by precipitation and irrigation
 - Moisture-dependent ET using the FAO Paper 56 method
- Non-point recharge to groundwater due to precipitation and irrigation
- Re-use of irrigation return flow
- Agricultural water demand based on available soil moisture, precipitation, crop ET requirement, crop acreage, basin irrigation efficiency and irrigation return flow re-use factor
- Pumping and stream diversions as sources of water to meet agricultural and urban water demands
- For planning studies, dynamic adjustment of pumping and/or stream diversions to meet the projected water demands

Groundwater Module
- Quasi 3-dimensional simulation of flow for a combination of confined, unconfined and leaky aquifer layers separated by aquitards
- Simulation of:
 - Changing aquifer conditions; e.g. a confined aquifer becoming unconfined due to excessive pumping
 - Subsidence
 - Pumping from multiple aquifer horizons
 - Recharge point (e.g. irrigation wells) and non-point (e.g. spreading basins, recharge due to precipitation and irrigation)
- Use of:
 - Galerkin finite element method and fully implicit scheme for the spatial and temporal discretization
 - Newton-Raphson method for the linearization of the system of equations
 - Point SOR or Generalized Preconditioned Conjugate Gradient methods for matrix inversion

Stream Module
- Assumption of zero storage at a stream reach in computing stream flows; i.e. \(Q_{in} = Q_{out} \)
- Dynamic simulation of the state of the stream - aquifer interaction; i.e. hydraulically connected or disconnected
- Fully coupled stream and groundwater conservation equations
- Stream-aquifer interaction:
 \[Q_s = C_s (h_s - h_g) \]
 where \(Q_s \) is the stream-aquifer interaction \((L^3/T); C_s \) is the conductance of stream bed material \((L^2/T); h_s \) is the head in stream; \(h_g \) is the groundwater head
- Simultaneous solution of stream and groundwater equations results in the direct computation of stream - aquifer interaction
- Simulation of by-passes, and diversions for agricultural and urban water use

Lake Module
- Computation of lake storage as a function of:
 - Precipitation
 - Evaporation
 - Inflows from streams and pumping
 - Lake-aquifer interaction
 - Lake outflow
- Dynamic simulation of the state of the lake-aquifer interaction; i.e. hydraulically connected or disconnected
- Fully coupled lake and groundwater conservation equations
- Lake-aquifer interaction:
 \[Q_{la} = C_{la} (h_l - h_g) \]
 where \(Q_{la} \) is the lake-aquifer interaction \((L^3/T); C_{la} \) is the conductance of lake bed material \((L^2/T); h_l \) is the lake surface elevation; \(h_g \) is the groundwater head
- Simulation of ponding and draining conditions for managed water bodies (e.g. managed wetlands) by using time-series maximum lake elevation

Simulation Output Options
- Extensive set of output options for simulation results include:
 - Groundwater, stream, tile drain, element face flow and boundary node flow hydrographs at selected locations
 - Vertical flow among aquifer layers
 - Groundwater budget at predefined subdomains
 - Detailed groundwater zone budget at arbitrarily grouped elements using a unique algorithm (Dogrul and Kadir, 2006)
 - Stream flow budget
 - Lake water budget
 - Root zone water budget
 - Agricultural and urban water demand and supply details
 - Stream diversions and delivery details
- Options to print simulation time-series results to ASCII text files or HEC-DSS files

Current Applications
- California Central Valley Simulation Model (CVSIM), by California Department of Water Resources
- West side of the California San Joaquin Valley (WESTSIM), by U. S. Bureau of Reclamation
- California Merced River Basin (MercedSim), by Lawrence Berkeley National Lab
- California Butte Basin Groundwater Model, by CDMD
- California Solano County Model, by West Yost & Assoc.
- Oregon Walla Walla River Basin, by Oregon State University, Corvallis
- Studies on the impacts of climate change on California water resources using IWFM and logit functions coupled with CalSim-II, a reservoir operations model, by University of California, Berkeley

References